• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Visualization and Imputation of Missing Values: With Applications in R

    Visualization and Imputation of Missing Values by Templ, Matthias;

    With Applications in R

    Sorozatcím: Statistics and Computing;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 171.19
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        72 618 Ft (69 160 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 14 524 Ft off)
      • Discounted price 58 094 Ft (55 328 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    This book explores visualization and imputation techniques for missing values and presents practical applications using the statistical software R. It explains the concepts of common imputation methods with a focus on visualization, description of data problems and practical solutions using R, including modern methods of robust imputation, imputation based on deep learning and imputation for complex data. By describing the advantages, disadvantages and pitfalls of each method, the book presents a clear picture of which imputation methods are applicable given a specific data set at hand.

    The material covered includes the pre-analysis of data, visualization of missing values in incomplete data, single and multiple imputation, deductive imputation and outlier replacement, model-based methods including methods based on robust estimates, non-linear methods such as tree-based and deep learning methods, imputation of compositional data, imputation quality evaluation from visual diagnostics to precision measures, coverage rates and prediction performance and a description of different model- and design-based simulation designs for the evaluation. The book also features a topic-focused introduction to R and R code is provided in each chapter to explain the practical application of the described methodology.

    Addressed to researchers, practitioners and students who work with incomplete data, the book offers an introduction to the subject as well as a discussion of recent developments in the field. It is suitable for beginners to the topic and advanced readers alike.

    Több

    Hosszú leírás:

    This book explores visualization and imputation techniques for missing values and presents practical applications using the statistical software R. It explains the concepts of common imputation methods with a focus on visualization, description of data problems and practical solutions using R, including modern methods of robust imputation, imputation based on deep learning and imputation for complex data. By describing the advantages, disadvantages and pitfalls of each method, the book presents a clear picture of which imputation methods are applicable given a specific data set at hand.

    The material covered includes the pre-analysis of data, visualization of missing values in incomplete data, single and multiple imputation, deductive imputation and outlier replacement, model-based methods including methods based on robust estimates, non-linear methods such as tree-based and deep learning methods, imputation of compositional data, imputation quality evaluation from visual diagnostics to precision measures, coverage rates and prediction performance and a description of different model- and design-based simulation designs for the evaluation. The book also features a topic-focused introduction to R and R code is provided in each chapter to explain the practical application of the described methodology.

    Addressed to researchers, practitioners and students who work with incomplete data, the book offers an introduction to the subject as well as a discussion of recent developments in the field. It is suitable for beginners to the topic and advanced readers alike.

    Több

    Tartalomjegyzék:

    Preface.- 1 Topic-focused Introduction to R and Data Sets Used.- 2  Distribution, Pre-analysis of Missing Values and Data Quality.- 3  Detection of the Missing Values Mechanism with Tests and Models.- 4  Visualisation of Missing Values.- 5  General Considerations on Univariate Methods, Single and Multiple Imputation.- 6 Deductive Imputation and Outlier Replacement.- 7 Imputation Without a Model.- 8 Model-based Methods.- 9 Non-linear Methods.- 10 Methods for compositional data.- 11  Evaluation of the Quality of Imputation.- 12 Simulation of Data for Simulation Studies.

    Több
    Mostanában megtekintett
    previous
    Visualization and Imputation of Missing Values: With Applications in R

    Visualization and Imputation of Missing Values: With Applications in R

    Templ, Matthias;

    72 618 Ft

    Advances in Computational Mechanics and Applications: OES 2023

    Advances in Computational Mechanics and Applications: OES 2023

    Pavlou, Dimitrios; Adeli, Hojjat; Correia, José A. F. O.;(ed.)

    104 391 Ft

    next