• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Two-dimensional Single-Variable Cubic Nonlinear Systems, Vol II: A Crossing-variable Cubic Vector Field

    Two-dimensional Single-Variable Cubic Nonlinear Systems, Vol II by Luo, Albert C. J.;

    A Crossing-variable Cubic Vector Field

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 171.19
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        72 618 Ft (69 160 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 5 809 Ft off)
      • Discounted price 66 809 Ft (63 627 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2024
    • Kiadó Springer
    • Megjelenés dátuma 2024. november 20.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783031571077
    • Kötéstípus Keménykötés
    • Terjedelem240 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk 4 Illustrations, black & white; 40 Illustrations, color
    • 664

    Kategóriák

    Rövid leírás:

    This book, the second of 15 related monographs, presents systematically a theory of cubic nonlinear systems with single-variable vector fields. The cubic vector fields are of crossing-variables, which are discussed as the second part. The 1-dimensional flow singularity and bifurcations are discussed in such cubic systems. The appearing and switching bifurcations of the 1-dimensional flows in such 2-diemnsional cubic systems are for the first time to be presented. Third-order parabola flows are presented, and the upper and lower saddle flows are also presented. The infinite-equilibriums are the switching bifurcations for the first and third-order parabola flows, and inflection flows with the first source and sink flows, and the upper and lower-saddle flows.  The appearing bifurcations in such cubic systems includes inflection flows and third-order parabola flows, upper and lower-saddle flows. 



    Readers will learn new concepts, theory, phenomena, and analytic techniques, including

    Constant and crossing-cubic systems

    Crossing-linear and crossing-cubic systems

    Crossing-quadratic and crossing-cubic systems

    Crossing-cubic and crossing-cubic systems

    Appearing and switching bifurcations

    Third-order centers and saddles

    Parabola-saddles and inflection-saddles

    Homoclinic-orbit network with centers

    Appearing bifurcations




    • Presents saddle flows plus third-order parabola flows and inflection flows as appearing flow bifurcations;

    • Presents saddle flows plus third-order parabola flows and inflection flows as appearing flow bifurcations;

    • Explains infinite-equilibriums for the switching of the first-order sink and source flows. 

    Több

    Hosszú leírás:

    This book, the second of 15 related monographs, presents systematically a theory of cubic nonlinear systems with single-variable vector fields. The cubic vector fields are of crossing-variables, which are discussed as the second part. The 1-dimensional flow singularity and bifurcations are discussed in such cubic systems. The appearing and switching bifurcations of the 1-dimensional flows in such 2-diemnsional cubic systems are for the first time to be presented. Third-order parabola flows are presented, and the upper and lower saddle flows are also presented. The infinite-equilibriums are the switching bifurcations for the first and third-order parabola flows, and inflection flows with the first source and sink flows, and the upper and lower-saddle flows.  The appearing bifurcations in such cubic systems includes inflection flows and third-order parabola flows, upper and lower-saddle flows. 



    Readers will learn new concepts, theory, phenomena, and analytic techniques, including

    Constant and crossing-cubic systems

    Crossing-linear and crossing-cubic systems

    Crossing-quadratic and crossing-cubic systems

    Crossing-cubic and crossing-cubic systems

    Appearing and switching bifurcations

    Third-order centers and saddles

    Parabola-saddles and inflection-saddles

    Homoclinic-orbit network with centers

    Appearing bifurcations

    Több

    Tartalomjegyzék:

    Constant and Self-Cubic Vector fields.- Self-linear and Self-cubic vector fields.- Self-quadratic and self-cubic vector fields .- Two self-cubic vector fields.

    Több