• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Two-dimensional Crossing-Variable Cubic Nonlinear Systems

    Two-dimensional Crossing-Variable Cubic Nonlinear Systems by Luo, Albert C. J.;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 160.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        68 079 Ft (64 837 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 5 446 Ft off)
      • Discounted price 62 633 Ft (59 650 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2024
    • Kiadó Springer
    • Megjelenés dátuma 2025. február 12.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783031628092
    • Kötéstípus Keménykötés
    • Terjedelem386 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk 1 Illustrations, black & white; 32 Illustrations, color
    • 687

    Kategóriák

    Rövid leírás:

    This book is the fourth of 15 related monographs presents systematically a theory of crossing-cubic nonlinear systems. In this treatment, at least one vector field is crossing-cubic, and the other vector field can be constant, crossing-linear, crossing-quadratic, and crossing-cubic. For constant vector fields, the dynamical systems possess 1-dimensional flows, such as parabola and inflection flows plus third-order parabola flows. For crossing-linear and crossing-cubic systems, the dynamical systems possess saddle and center equilibriums, parabola-saddles, third-order centers and saddles (i.e, (3rd UP+:UP+)-saddle and (3rdUP-:UP-)-saddle) and third-order centers (i.e., (3rd DP+:DP-)-center, (3rd DP-, DP+)-center) . For crossing-quadratic and crossing-cubic systems, in addition to the first and third-order saddles and centers plus parabola-saddles, there are (3:2)parabola-saddle and double-inflection saddles, and for the two crossing-cubic systems, (3:3)-saddles and centers exist. Finally, the homoclinic orbits with centers can be formed, and the corresponding homoclinic networks of centers and saddles exist.



    Readers will learn new concepts, theory, phenomena, and analytic techniques, including



    ? Constant and crossing-cubic systems



    ? Crossing-linear and crossing-cubic systems



    ? Crossing-quadratic and crossing-cubic systems



    ? Crossing-cubic and crossing-cubic systems



    ? Appearing and switching bifurcations



    ? Third-order centers and saddles



    ? Parabola-saddles and inflection-saddles



    ? Homoclinic-orbit network with centers



    ? Appearing bifurcations




    • ?Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems;

    • Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-saddles;

    • Develops homoclinic networks of source, sink and saddles.

    Több

    Hosszú leírás:

    This book is the fourth of 15 related monographs presents systematically a theory of crossing-cubic nonlinear systems. In this treatment, at least one vector field is crossing-cubic, and the other vector field can be constant, crossing-linear, crossing-quadratic, and crossing-cubic. For constant vector fields, the dynamical systems possess 1-dimensional flows, such as parabola and inflection flows plus third-order parabola flows. For crossing-linear and crossing-cubic systems, the dynamical systems possess saddle and center equilibriums, parabola-saddles, third-order centers and saddles (i.e, (3rd UP+:UP+)-saddle and (3rdUP-:UP-)-saddle) and third-order centers (i.e., (3rd DP+:DP-)-center, (3rd DP-, DP+)-center) . For crossing-quadratic and crossing-cubic systems, in addition to the first and third-order saddles and centers plus parabola-saddles, there are (3:2)parabola-saddle and double-inflection saddles, and for the two crossing-cubic systems, (3:3)-saddles and centers exist. Finally,the homoclinic orbits with centers can be formed, and the corresponding homoclinic networks of centers and saddles exist.



    Readers will learn new concepts, theory, phenomena, and analytic techniques, including



    ? Constant and crossing-cubic systems



    ? Crossing-linear and crossing-cubic systems



    ? Crossing-quadratic and crossing-cubic systems



    ? Crossing-cubic and crossing-cubic systems



    ? Appearing and switching bifurcations



    ? Third-order centers and saddles



    ? Parabola-saddles and inflection-saddles



    ? Homoclinic-orbit network with centers



    ? Appearing bifurcations



     

    Több

    Tartalomjegyzék:

    Constant and crossing-cubic vector fields.- Crossing-linear and crossing-cubic vector fields.- Crossing-quadratic and crossing-cubic Vector Field.- Two crossing-cubic vector fields.

    Több