
Topics in Groups and Geometry
Growth, Amenability, and Random Walks
Sorozatcím: Springer Monographs in Mathematics;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 96.29
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 8 169 Ft off)
- Discounted price 32 677 Ft (31 121 Ft + 5% áfa)
40 846 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1st ed. 2021
- Kiadó Springer
- Megjelenés dátuma 2022. november 24.
- Kötetek száma 1 pieces, Book
- ISBN 9783030881115
- Kötéstípus Puhakötés
- Terjedelem464 oldal
- Méret 235x155 mm
- Súly 735 g
- Nyelv angol
- Illusztrációk 30 Illustrations, black & white 457
Kategóriák
Rövid leírás:
This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov?s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov?s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today.
The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem.
The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.
TöbbHosszú leírás:
This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov?s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov?s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research which is still active today.
The purpose of the book is to collect these naturally related results together in one place, most of which are scattered throughout the literature, some of them appearing here in book form for the first time. In this way, the connections between these topics are revealed, providing a pleasant introduction to geometric group theory based on ideas surrounding Gromov's theorem.
The book will be of interest to mature undergraduate and graduate students in mathematics who are familiar with basic group theory and topology, and who wish to learn more about geometric, analytic, and probabilistic aspects of infinite groups.
?The book under review gives a detailed introduction to several important topics in Geometric Group Theory at a level suitable for advanced undergraduates or graduate students. ? The book ? is a useful addition to the literature. ? Each chapter has a range of exercises at a range of levels ? most are independent problems useful for self-study. There are solutions or hints to some of the exercises at the back of the book.? (John M. Mackay, Mathematical Reviews, February, 2024)
TöbbTartalomjegyzék:
- Foreword.- Preface.- Part I Algebraic Theory: 1. Free Groups.- 2. Nilpotent Groups.- 3. Residual Finiteness and the Zassenhaus Filtration.- 4. Solvable Groups.- 5. Polycyclic Groups.- 6. The Burnside Problem.- Part II Geometric Theory: 7. Finitely Generated Groups and Their Growth Functions.- 8. Hyperbolic Plane Geometry and the Tits Alternative.- 9. Topological Groups, Lie Groups, and Hilbert Fifth Problem.- 10. Dimension Theory.- 11. Ultra?lters, Ultraproducts, Ultrapowers, and Asymptotic Cones.- 12. Gromov?s Theorem.- Part III Analytic and Probabilistic Theory: 13. The Theorems of Polya and Varopoulos.- 14. Amenability, Isoperimetric Pro?le, and F?lner Functions.- 15. Solutions or Hints to Selected Exercises.- References.- Subject Index.- Index of Authors.
Több
Topics in Groups and Geometry: Growth, Amenability, and Random Walks
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
40 846 Ft