
Topics in Extrinsic Geometry of Codimension-One Foliations
Sorozatcím: SpringerBriefs in Mathematics; 1;
-
8% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 53.49
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 8% (cc. 1 815 Ft off)
- Discounted price 20 874 Ft (19 880 Ft + 5% áfa)
22 690 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 2011
- Kiadó Springer
- Megjelenés dátuma 2011. július 26.
- Kötetek száma 1 pieces, Book
- ISBN 9781441999078
- Kötéstípus Puhakötés
- Terjedelem114 oldal
- Méret 235x155 mm
- Súly 454 g
- Nyelv angol
- Illusztrációk 6 Illustrations, black & white 0
Kategóriák
Rövid leírás:
Extrinsic geometry describes those properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds.
Hosszú leírás:
Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results.
The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator.
The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves.
This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.
From the reviews:
?There are three chapters in this research monograph, each devoted to a different aspect of the extrinsic geometry of ?. ? This book generalizes well-known results but also covers new ground. It is rich in ideas for those who are interested in the geometry of codimension-one foliations.? (James Hebda, Zentralblatt MATH, Vol. 1228, 2012)
?The aim of this research monograph is to study several topics in extrinsic geometry of codimension-one foliations, i.e., topics related to properties of foliations which can be expressed in terms of the second fundamental form of the leaves and its invariants ? . The book is very well written and contains a lot of results that will be interesting to specialists and also to differential and Riemannian geometers who are not necessarily experts in the field of foliations.? (Paolo Mastrolia, Mathematical Reviews, Issue 2012 m)
TöbbTartalomjegyzék:
-1. Integral Formulae (Introduction, Preliminaries, Integral Formulae for Codimension-one foliations).-2.Variation Formulae (Introduction, Auxiliary results, Variations of extrinsic geometric quantities, Variations of general functional, Variations of particular functional, Applications and examples).-3. Extrinsic Geometric Flows (Introduction, The systems of PDE?s related to EGF, Auxiliary results, Existence and uniqueness results, A solution to general case, Global existence of EGF, Variation formulae for EGF, Extrinsic geometric solitons, Applications and examples).- References.
Több
Topics in Extrinsic Geometry of Codimension-One Foliations
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
22 690 Ft