• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Tiny Machine Learning Quickstart: Machine Learning for Arduino Microcontrollers

    Tiny Machine Learning Quickstart by Salerno, Simone;

    Machine Learning for Arduino Microcontrollers

    Sorozatcím: Maker Innovations Series;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 64.19
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        27 229 Ft (25 932 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 2 178 Ft off)
      • Discounted price 25 050 Ft (23 857 Ft + 5% áfa)

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma First Edition
    • Kiadó Apress
    • Megjelenés dátuma 2025. április 30.
    • Kötetek száma 1 pieces, Book

    • ISBN 9798868812934
    • Kötéstípus Puhakötés
    • Terjedelem326 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk 105 Illustrations, black & white
    • 700

    Kategóriák

    Rövid leírás:

    Be a part of the Tiny Machine Learning (TinyML) revolution in the ever-growing world of IoT. This book examines the concepts, workflows, and tools needed to make your projects smarter, all within the Arduino platform.



    You?ll start by exploring Machine learning in the context of embedded, resource-constrained devices as opposed to your powerful, gigabyte-RAM computer. You?ll review the unique challenges it poses, but also the limitless possibilities it opens. Next, you?ll work through nine projects that encompass different data types (tabular, time series, audio and images) and tasks (classification and regression). Each project comes with tips and tricks to collect, load, plot and analyse each type of data.



    Throughout the book, you?ll apply three different approaches to TinyML: traditional algorithms (Decision Tree, Logistic Regression, SVM), Edge Impulse (a no-code online tools), and TensorFlow for Microcontrollers. Each has its strengths and weaknesses, and you will learn how to choose the most appropriate for your use case. TinyML Quickstart will provide a solid reference for all your future projects with minimal cost and effort.



    You will:




    • Navigate embedded ML challenges

    • Integrate Python with Arduino for seamless data processing

    • Implement ML algorithms

    • Harness the power of Tensorflow for artificial neural networks

    • Leverage no-code tools like Edge Impulse

    • Execute real-world projects

    Több

    Hosszú leírás:

    Be a part of the Tiny Machine Learning (TinyML) revolution in the ever-growing world of IoT. This book examines the concepts, workflows, and tools needed to make your projects smarter, all within the Arduino platform.



    You?ll start by exploring Machine learning in the context of embedded, resource-constrained devices as opposed to your powerful, gigabyte-RAM computer. You?ll review the unique challenges it poses, but also the limitless possibilities it opens. Next, you?ll work through nine projects that encompass different data types (tabular, time series, audio and images) and tasks (classification and regression). Each project comes with tips and tricks to collect, load, plot and analyse each type of data.



    Throughout the book, you?ll apply three different approaches to TinyML: traditional algorithms (Decision Tree, Logistic Regression, SVM), Edge Impulse (a no-code online tools), and TensorFlow for Microcontrollers. Each has its strengths and weaknesses, and you will learn how to choose the most appropriate for your use case. TinyML Quickstart will provide a solid reference for all your future projects with minimal cost and effort.



    What You Will Learn




    • Navigate embedded ML challenges

    • Integrate Python with Arduino for seamless data processing

    • Implement ML algorithms

    • Harness the power of Tensorflow for artificial neural networks

    • Leverage no-code tools like Edge Impulse

    • Execute real-world projects



    Who This Book Is For



    Electronics hobbyists and developers with a basic understanding of Tensorflow, ML in Python, and Arduino-based programming looking to apply that knowledge with microcontrollers. Previous experience with C++ is helpful but not required.

    Több

    Tartalomjegyzék:

    Chapter 1: Introduction to Tiny Machine Learning.- Chapter 2: Tabular data classification.- Chapter 3: Tabular data regression.-  Chapter 4: Time series classification with Edge Impulse.- Chapter 5: Time series classification without Edge Impulse.- Chapter 6: Audio Wake Word detection with Edge Impulse.- Chapter 7: Object detection with Edge Impulse.- Chapter 8: TensorFlow for Microcontrollers from scratch.

    Több