• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Statistics with Julia: Fundamentals for Data Science, Machine Learning and Artificial Intelligence

    Statistics with Julia by Nazarathy, Yoni; Klok, Hayden;

    Fundamentals for Data Science, Machine Learning and Artificial Intelligence

    Sorozatcím: Springer Series in the Data Sciences;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 192.59
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        81 696 Ft (77 806 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 6 536 Ft off)
      • Discounted price 75 161 Ft (71 582 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2021
    • Kiadó Springer
    • Megjelenés dátuma 2021. szeptember 4.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783030709006
    • Kötéstípus Keménykötés
    • Terjedelem527 oldal
    • Méret 279x210 mm
    • Súly 1554 g
    • Nyelv angol
    • Illusztrációk 18 Illustrations, black & white; 130 Illustrations, color
    • 293

    Kategóriák

    Rövid leírás:

    This monograph uses the Julia language to guide the reader through an exploration of the fundamental concepts of probability and statistics, all with a view of mastering machine learning, data science, and artificial intelligence. The text does not require any prior statistical knowledge and only assumes a basic understanding of programming and mathematical notation. It is accessible to practitioners and researchers in data science, machine learning, bio-statistics, finance, or engineering who may wish to solidify their knowledge of probability and statistics. 

    The book progresses through ten independent chapters starting with an introduction of Julia, and moving through basic probability, distributions, statistical inference, regression analysis, machine learning methods, and the use of Monte Carlo simulation for dynamic stochastic models. Ultimately this text introduces the Julia programming language as a computational tool, uniquely addressing end-users rather than developers. It makes heavy use of over 200 code examples to illustrate dozens of key statistical concepts. The Julia code, written in a simple format with parameters that can be easily modified, is also available for download from the book?s associated GitHub repository online.

    See what co-creators of the Julia language are saying about the book:

    Professor Alan Edelman, MIT: With ?Statistics with Julia?, Yoni and Hayden have written an easy to read, well organized, modern introduction to statistics.  The code may be looked at, and understood on the static pages of a book, or even better, when running live on a computer.  Everything you need is here in one nicely written self-contained reference.  

    Dr. Viral Shah, CEO of Julia Computing: Yoni and Hayden provide a modern way to learn statistics with the Julia programming language. This book has been perfected through iteration over several semesters in the classroom. It prepares the reader with two complementary skills - statistical reasoning with hands on experience and working with large datasets through training in Julia.

    Több

    Hosszú leírás:

    This monograph uses the Julia language to guide the reader through an exploration of the fundamental concepts of probability and statistics, all with a view of mastering machine learning, data science, and artificial intelligence. The text does not require any prior statistical knowledge and only assumes a basic understanding of programming and mathematical notation. It is accessible to practitioners and researchers in data science, machine learning, bio-statistics, finance, or engineering who may wish to solidify their knowledge of probability and statistics. 

    The book progresses through ten independent chapters starting with an introduction of Julia, and moving through basic probability, distributions, statistical inference, regression analysis, machine learning methods, and the use of Monte Carlo simulation for dynamic stochastic models. Ultimately this text introduces the Julia programming language as a computational tool, uniquely addressing end-users rather than developers. It makes heavy use of over 200 code examples to illustrate dozens of key statistical concepts. The Julia code, written in a simple format with parameters that can be easily modified, is also available for download from the book?s associated GitHub repository online.

    See what co-creators of the Julia language are saying about the book:

    Professor Alan Edelman, MIT: With ?Statistics with Julia?, Yoni and Hayden have written an easy to read, well organized, modern introduction to statistics.  The code may be looked at, and understood on the static pages of a book, or even better, when running live on a computer.  Everything you need is here in one nicely written self-contained reference.  

    Dr. Viral Shah, CEO of Julia Computing: Yoni and Hayden provide a modern way to learn statistics with the Julia programming language.This book has been perfected through iteration over several semesters in the classroom. It prepares the reader with two complementary skills - statistical reasoning with hands on experience and working with large datasets through training in Julia.

    Több

    Tartalomjegyzék:

    Introducing Julia.- Basic Probability.- Probability Distributions.- Processing and Summarizing Data.- Statistical Inference Concepts.- Confidence Intervals.- Hypothesis Testing.- Linear Regression and Extensions.- Machine Learning Basics.- Simulation of Dynamic Models.- Appendix A: How-to in Julia.- Appendix B: Additional Julia Features.- Appendix C: Additional Packages.

    Több
    Mostanában megtekintett
    previous
    Statistics with Julia: Fundamentals for Data Science, Machine Learning and Artificial Intelligence

    Statistics with Julia: Fundamentals for Data Science, Machine Learning and Artificial Intelligence

    Nazarathy, Yoni; Klok, Hayden;

    81 696 Ft

    next