• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Relativity in Modern Physics

    Relativity in Modern Physics by Deruelle, Nathalie; Uzan, Jean-Philippe;

    Sorozatcím: Oxford Graduate Texts;

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 44.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        22 769 Ft (21 685 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 2 277 Ft off)
      • Discounted price 20 492 Ft (19 517 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó OUP Oxford
    • Megjelenés dátuma 2024. november 12.

    • ISBN 9780198939788
    • Kötéstípus Puhakötés
    • Terjedelem704 oldal
    • Méret 245x170x36 mm
    • Súly 1232 g
    • Nyelv angol
    • 662

    Kategóriák

    Rövid leírás:

    This comprehensive textbook on relativity integrates Newtonian physics, special relativity and general relativity into a single book. It emphasizes the deep underlying principles common to them all, yet explains how they are applied in different ways in these three contexts.

    Több

    Hosszú leírás:

    This comprehensive textbook on relativity integrates Newtonian physics, special relativity and general relativity into a single book that emphasizes the deep underlying principles common to them all, yet explains how they are applied in different ways in these three contexts.

    Newton's ideas about how to represent space and time, his laws of dynamics, and his theory of gravitation established the conceptual foundation from which modern physics developed. Book I in this volume offers undergraduates a modern view of Newtonian theory, emphasizing those aspects needed for understanding quantum and relativistic contemporary physics.

    In 1905, Albert Einstein proposed a novel representation of space and time, special relativity. Book II presents relativistic dynamics in inertial and accelerated frames, as well as a detailed overview of Maxwell's theory of electromagnetism. This provides undergraduate and graduate students with the background necessary for studying particle and accelerator physics, astrophysics and Einstein's theory of general relativity.

    In 1915, Einstein proposed a new theory of gravitation, general relativity. Book III in this volume develops the geometrical framework in which Einstein's equations are formulated, and presents several key applications: black holes, gravitational radiation, and cosmology, which will prepare graduate students to carry out research in relativistic astrophysics, gravitational wave astronomy, and cosmology.

    A very rich book: All notions like relativity, space and time are carefully explained, their history is mentioned by giving plenty of footnotes. The mathematical side, the experimental side, and the view of the theoretical physicist are presented adequately at the respective places.

    Több

    Tartalomjegyzék:

    Book 1 Space, time, and gravity in Newton's theory
    Part I Kinematics
    Cartesian coordinates
    Vector geometry
    Curvilinear coordinates
    Differential geometry
    Part II Dynamics
    Equations of motion
    Dynamics of massive systems
    Conservation laws
    Lagrangian mechanics
    Hamiltonian mechanics
    Kinetic theory
    Part III
    The law of gravitation
    The Kepler problem
    The N-body problem
    Deformations of celestial bodies
    Self-gravitating fluids
    Newtonian cosmology
    Light in Newtonian theory
    Book 2 Special relativity and Maxwell's theory
    Part I Kinematics
    Minkowski spacetime
    The kinematics of a point particle
    The kinematics of light
    The wave vector of light
    Accelerated frames
    Part II Dynamics
    Dynamics of a point particle
    Rotating systems
    Fields and matter
    The classical scalar field
    The Nordström theory
    Part III Electromagnetism
    The Lorentz force
    The Maxwell equaions
    Constant fields
    The free field
    Electromagnetic waves
    Waves in a medium
    Part IV Electrodynamics
    The field of moving charge
    Radiation by a charge
    The radiation reaction force
    Interacting charges I
    Interacting charges II
    Electromagnetism and differential geometry
    Book 3 General relativity and gravitation
    Part I Curved spacetime and gravitation
    The equivalence principle
    Riemannian manifolds
    Matter in curved spacetime
    The Einstein equations
    Conservation laws
    Part II The Schwarzschild solution and black holes
    The Schwarzchild solution
    The Schwarzchild black hole
    The Kerr solution
    The physics of black holes I
    The physics of black holes II
    Part III General relativity and experiment
    Tests in the solar system
    The post-Newtonian approximation
    Gravitational waves and the radiative field
    Gravitational radiation
    The two-body problem and radiative losses
    The two-body problem: an effective-one-body approach: Written in collaboration with Félix-Louis Julié
    Part IV Friedmann-Lemaître solutions and cosmology
    Cosmological spacetimes
    Friedmann-Lemaître spacetimes
    The Lambda-CDM model of the hot Big Bang
    Inflationary models of the primordial universe
    Cosmological perturbations
    Primordial quantum perturbations
    Part V Elements of Riemannian geometry
    The covariant derivative and the curvature
    Riemannian manifolds
    The Cartan structure equations

    Több