• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Quantitative Trading Strategies Using Python: Technical Analysis, Statistical Testing, and Machine Learning

    Quantitative Trading Strategies Using Python by Liu, Peng;

    Technical Analysis, Statistical Testing, and Machine Learning

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 58.84
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        24 959 Ft (23 771 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 4 992 Ft off)
      • Discounted price 19 968 Ft (19 017 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma First Edition
    • Kiadó Apress
    • Megjelenés dátuma 2023. szeptember 10.
    • Kötetek száma 1 pieces, Book

    • ISBN 9781484296745
    • Kötéstípus Puhakötés
    • Terjedelem337 oldal
    • Méret 254x178 mm
    • Súly 669 g
    • Nyelv angol
    • Illusztrációk 12 Illustrations, black & white; 90 Illustrations, color
    • 536

    Kategóriák

    Rövid leírás:

    Build and implement trading strategies using Python. This book will introduce you to the fundamental concepts of quantitative trading and shows how to use Python and popular libraries to build trading models and strategies from scratch. It covers practical trading strategies coupled with step-by-step implementations that touch upon a wide range of topics, including data analysis and visualization, algorithmic trading, backtesting, risk management, optimization, and machine learning, all coupled with practical examples in Python.

    Part one of Quantitative Trading Strategies with Python covers the fundamentals of trading strategies, including an introduction to quantitative trading, the electronic market, risk and return, and forward and futures contracts. Part II introduces common trading strategies, including trend-following, momentum trading, and evaluation process via backtesting. Part III covers more advanced topics, including statistical arbitrage using hypothesistesting, optimizing trading parameters using Bayesian optimization, and generating trading signals using a machine learning approach.

    Whether you're an experienced trader looking to automate your trading strategies or a beginner interested in learning quantitative trading, this book will be a valuable resource. Written in a clear and concise style that makes complex topics easy to understand, and chock full of examples and exercises to help reinforce the key concepts, you?ll come away from it with a firm understanding of core trading strategies and how to use Python to implement them.

    You will:

    • Master the fundamental concepts of quantitative trading
    • Use Python and its popular libraries to build trading models and strategies from scratch
    • Perform data analysis and visualization, algorithmic trading, backtesting, risk management, optimization, and machine learning for trading strategies using Python
    • Utilize common trading strategies such as trend-following, momentum trading, and pairs trading
    • Evaluate different quantitative trading strategies by applying the relevant performance measures and statistics in a scientific manner during backtesting

    Több

    Hosszú leírás:

    Build and implement trading strategies using Python. This book will introduce you to the fundamental concepts of quantitative trading and shows how to use Python and popular libraries to build trading models and strategies from scratch. It covers practical trading strategies coupled with step-by-step implementations that touch upon a wide range of topics, including data analysis and visualization, algorithmic trading, backtesting, risk management, optimization, and machine learning, all coupled with practical examples in Python.

    Part one of Quantitative Trading Strategies with Python covers the fundamentals of trading strategies, including an introduction to quantitative trading, the electronic market, risk and return, and forward and futures contracts. Part two introduces common trading strategies, including trend-following, momentum trading, and evaluation process via backtesting. Part three covers more advanced topics, including statistical arbitrage using hypothesistesting, optimizing trading parameters using Bayesian optimization, and generating trading signals using a machine learning approach.

    Whether you're an experienced trader looking to automate your trading strategies or a beginner interested in learning quantitative trading, this book will be a valuable resource. Written in a clear and concise style that makes complex topics easy to understand, and chock full of examples and exercises to help reinforce the key concepts, you?ll come away from it with a firm understanding of core trading strategies and how to use Python to implement them.

    What You Will Learn

    • Master the fundamental concepts of quantitative trading
    • Use Python and its popular libraries to build trading models and strategies from scratch
    • Perform data analysis and visualization, algorithmic trading, backtesting, risk management, optimization, and machine learning for trading strategies using Python
    • Utilize common trading strategies such as trend-following, momentum trading, and pairs trading
    • Evaluate different quantitative trading strategies by applying the relevant performance measures and statistics in a scientific manner during backtesting

    Who This Book Is For

    Aspiring quantitative traders and analysts, data scientists interested in finance, and researchers or students studying quantitative finance, financial engineering, or related fields.

    Több

    Tartalomjegyzék:

    Chapter 1: Introduction to Quantitative Trading.- Chapter 2: Understanding the Electronic Market.- Chapter 3: Understanding Risk and Return.- Chapter 4: Forward and Futures Contracts.- Chapter 5: Trend Following Strategy.- Chapter 6: Momentum Trading Strategy.- Chapter 7: Backtesting A Trading Strategy.- Chapter 8: Statistical Arbitrage with Hypothesis Testing.- Chapter 9: Optimizing Trading Strategies with Bayesian Optimization.- Chapter 10: Optimizing Trading Strategies with Machine Learning.

    Több
    Mostanában megtekintett
    previous
    A Systems Approach to Modeling Community Development Projects

    A Systems Approach to Modeling Community Development Projects

    Amadei, Bernard;

    33 908 Ft

    Fundamentals of Robust Machine Learning ? Handling  Outliers and Anomalies in Data Science

    Fundamentals of Robust Machine Learning ? Handling Outliers and Anomalies in Data Science

    Saleh,;

    43 777 Ft

    Quantitative Trading Strategies Using Python: Technical Analysis, Statistical Testing, and Machine Learning

    Quantitative Trading Strategies Using Python: Technical Analysis, Statistical Testing, and Machine Learning

    Liu, Peng;

    24 959 Ft

    Bing, a Basic Computer Program for Modeling Unsteady Flow of Bingham Viscoplastic Material: Usgs Open-File Report 89-367

    Bing, a Basic Computer Program for Modeling Unsteady Flow of Bingham Viscoplastic Material: Usgs Open-File Report 89-367

    Savage, William Z.;Amadei, Bernard

    5 730 Ft

    Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology

    Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology

    Mourtzis, Dimitris; (ed.)

    74 235 Ft

    next