• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Power and Sample Size in R

    Power and Sample Size in R by Crespi, Catherine M.;

    Sorozatcím: Chapman & Hall/CRC Biostatistics Series;

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 74.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        37 952 Ft (36 145 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 3 795 Ft off)
      • Discounted price 34 157 Ft (32 531 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    This book guides the reader through power and sample size calculations for a variety of study outcomes and designs and illustrates their implementation in R. It is designed to be used as a learning tool for students as well as a resource for experienced statisticians and investigators. 

    Több

    Hosszú leírás:

    Power and Sample Size in R guides the reader through power and sample size calculations for a wide variety of study outcomes and designs and illustrates their implementation in R software. It is designed to be used as a learning tool for students as well as a resource for experienced statisticians and investigators. 


    The book begins by explaining the process of power calculation step by step at an introductory level and then builds to increasingly complex and varied topics. For each type of study design, the information needed to perform a calculation and the factors that affect power are explained.  Concepts are explained with statistical rigor but made accessible through intuition and examples. Practical advice for performing sample size and power calculations for real studies is given throughout.


    The book demonstrates calculations in R. It is integrated with the companion R package powertools and also draws on and summarizes the capabilities of other R packages. Only a basic proficiency in R is assumed.


    Topics include comparison of group means and proportions; ANOVA, including multiple comparisons; power for confidence intervals; multistage designs; linear, logistic and Poisson regression; crossover studies; multicenter, cluster randomized and stepped wedge designs; and time to event outcomes. Chapters are also devoted to designing noninferiority, superiority by a margin and equivalence studies and handling multiple primary endpoints.


    By emphasizing statistical thinking about the factors that influence power for different study designs and outcomes as well as providing R code, this book equips the reader with the knowledge and tools to perform their own calculations with confidence. Supplemental material available at: https://powerandsamplesize.org/.


    Key Features:



    • Explains power and sample size calculation for a wide variety of study designs and outcomes

    • Suitable for both students and experienced researchers

    • Highlights key factors influencing power and provides practical tips for designing real studies

    • Includes extensive examples with R code

    Több

    Tartalomjegyzék:

    Preamble  1. Preliminaries  2. Getting started: a first calculation  3. One or two means  4. Hypotheses for different study objectives  5. Analysis of variance for comparing means  6. Proportions: large sample methods  7. Exact methods for proportions  8. Categorical variables  9. Precision and confidence intervals  10. Correlation and linear regression  11. Generalized linear regression  12. Crossover studies  13. Multisite trials  14. Cluster randomized trials: parallel designs  15. Cluster randomized trials: longitudinal designs  16. Time to event outcomes  17. Multiple primary endpoints  Bibliography  Index

    Több