Newtonian Dynamics

An Introduction
 
Kiadás sorszáma: 1
Kiadó: CRC Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 45.99
Becsült forint ár:
22 213 Ft (21 155 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

17 770 (16 924 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 4 443 Ft)
A kedvezmény érvényes eddig: 2024. június 30.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This textbook provides a comprehensive review of Newtonian dynamics at a level suitable for undergraduate physics students. 

Hosszú leírás:

This textbook provides a comprehensive review of Newtonian dynamics at a level suitable for undergraduate physics students. It demonstrates that Newton?s three laws of motion, combined with a few simple force laws, not only can describe the motions of everyday objects observed on the surface of the Earth, but can also account for the motions of celestial objects seen in the sky. It helps bridge the problematic transition between elementary physics courses and upper-division physics courses. The book starts off at a level suitable for undergraduate (freshman) physics students and very gradually increases, until, toward the end, it approaches (but does not quite reach) a level characteristic of a graduate (senior) physics course.


Each chapter of the book ends with a large number of numerical and analytical exercises and, in all appropriate cases, the final answers to the exercises are specified. The large number of exercises will allow students to accurately test their understanding of the material presented in the book, ideal for students who are self-studying or are taking classes remotely.


Key Features:




  • Provides a brief and accessible introduction to a complex topic



  • Contains a more thorough treatment of the motions of heavenly bodies than conventional elementary mechanics texts



  • Provides a wealth of end-of-chapter exercises to test understanding


Richard Fitzpatrick is a Professor of physics at the University of Texas at Austin, USA, where he has been a faculty member since 1994. He is a member of the Royal Astronomical Society, a fellow of the American Physical Society, and the author of several textbooks.

Tartalomjegyzék:

Preface 
Acknowledgements 


Measurement and Units
Mks Units 
Standard Prefixes 
Other Units.
Dimensional Analysis  
Experimental Errors 
Exercises 


Motion in One Dimension
Introduction 
Displacement 
Velocity 
Acceleration 
Motion with Constant Velocity 
Motion with Constant Acceleration 
Useful Results 
Free-Fall Under Gravity 
Exercises 


Motion in Three Dimensions
Introduction 
Vector Mathematics 
Scalars and Vectors 
Vector Algebra
Cartesian Components of a Vector 
Coordinate Transformations 
Scalar Product 
Vector Product 
Vector Displacement, Velocity, and Acceleration
Motion with Constant Velocity 
Motion with Constant Acceleration
Projectile Motion 
Relative Velocity 
Exercises


Newton's Laws of Motion
Introduction 
Newton's First Law of Motion 
Newton's Second Law of Motion 
Measurement of Force 
Newton's Third Law of Motion 
Mass, Weight, and Reaction
Block Resting on Earth's Surface 
Block in an Elevator 
Suspended Masses 
Block Suspended by a Single Cable 
Block Suspended by Three Cables
Two Blocks Suspended by Five Cables 
Many Blocks Suspended by Many Cables 
Catenary 
Suspension Bridge 
Cable-Pulley Systems 
Simple Pulley 
Compound Pulley 
Table Pulley 
Atwood Machine 
Velocity-Dependent Forces
Friction 
Inclined Planes 
Smooth Planes 
Rough Planes 
Frames of Reference 
Exercises 


Conservation of Energy
Introduction 
Energy Conservation During Free-Fall 
Work 
Conservative and Non-Conservative Force-Fields 
Potential Energy 
Hooke's Law 
Motion in a General One-Dimensional Potential 
Power 
Exercises 


Conservation of Momentum
Introduction 
Two-Component Systems 
Hot-Air Balloon 
Cannon and Cannonball 
Multi-Component Systems 
Explosion of Krypton 
Rocket Science 
Impulses 
Bouncing Ball 
One-Dimensional Collisions 
Elastic Collisions 
Totally Inelastic Collisions 
Inelastic Collisions 
Two-Dimensional Collisions 
Exercises 


Circular Motion 
Introduction 
Uniform Circular Motion
Centripetal Acceleration 
Rotating Weight on the End of a Cable 
Banked Curve 
Conical Pendulum 
Non-Uniform Circular Motion 
Vertical Pendulum 
Motion on Curved Surfaces 
Fairground Ride 
Skier on a Hemispherical Mountain 
Exercises 


Rotational Motion
Introduction
Rigid Body Rotation 
Is Rotation a Vector? 
Center of Mass 
Centroid of Regular Pyramid 
Moment of Inertia 
Perpendicular Axis Theorem 
Parallel Axis Theorem 
Moment of Inertia of a Circular Disk
Standard Moments of Inertia 
Torque 
Power and Work 
Translational Motion Versus Rotational Motion 
Unwinding Pulley 
Physics of Baseball Bats
Combined Translational and Rotational Motion 
Cylinder Rolling Down a Rough Incline
Exercises


Angular Momentum
Introduction 
Angular Momentum of a Point Particle 
Angular Momentum of an Extended Object 
Angular Momentum of a Multi-Component System 
Conservation of Angular Momentum 
Two Movable Weights on a Rotating Rod 
Figure Skater 
Bullet Striking a Pivoted Rod 
Spinning Top
Exercises 


Statics
Introduction 
Principles of Statics 
Equilibrium of a Laminar Object 
Rods and Cables 
Horizontal Rod Suspended from Two Cables 
Pivoting Horizontal Rod Supported by a Cable
Ladders and Walls 
Jointed Rods 
Tipping or Sliding?
Exercises


Oscillatory Motion 
Introduction 
Simple Harmonic Motion 
Torsion Pendulum 
Simple Pendulum 
Compound Pendulum 
Exercises 


Rotating Reference Frames
Introduction 
Rotating Reference Frames 
Centrifugal Acceleration 
Coriolis Force
Foucault Pendulum 
Exercises 


Newtonian Gravity 
Introduction 
Universal Gravity 
Surface Gravity 
Gravitational Potential Energy 
Escape Velocity 
Circular Orbits 
Lunar Orbital Period 
Geostationary Satellites 
Exercises 


Orbital Motion
Introduction 
Kepler's Laws 
Planetary Equations of Motion 
Conic Sections 
Kepler's Second Law 
Kepler's First Law 
Kepler's Third Law 
Orbital Parameters 
Orbital Energies 
Transfer Orbits 
Low-Eccentricity Orbits 
Two-Body Dynamics 
Binary Star Systems 
Exercises


Gravitational Potential Theory
Introduction
Gravitational Potential
Axially-Symmetric Mass Distributions 
Gravitational Potential due to a Uniform Sphere 
Gravitational Potential Outside a Uniform Spheroid 
Rotational Flattening 
Rotational Flattening of Earth 
Tidal Elongation 
Tidal Elongation of Earth due to Moon
Tidal Elongation of Earth due to Sun
Ocean Tides 
Luni-Solar Precession 
Exercises


Useful Mathematics 
Calculus 
Series Expansions 
Trigonometric Identities 
Hyperbolic Identities 
Complex Identities 
Vector Identities 


Bibliography
Index