• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Musical Scales and their Mathematics

    Musical Scales and their Mathematics by Schüffler, Karlheinz;

    Sorozatcím: Mathematics Study Resources; 14;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 69.54
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        29 498 Ft (28 094 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 5 900 Ft off)
      • Discounted price 23 599 Ft (22 475 Ft + 5% áfa)

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2024
    • Kiadó Springer
    • Megjelenés dátuma 2025. július 20.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783662695401
    • Kötéstípus Puhakötés
    • Terjedelem711 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk 125 Illustrations, black & white; 10 Illustrations, color
    • 700

    Kategóriák

    Rövid leírás:

    Are musical scales just trivial? This book explores this question, revealing the complexity of creating "harmony" in tonal systems.



    Why 12 tones? Are there alternatives? Are 12 fifths equal 7 octaves? What is "consonance"? When are intervals "perfect" or "imperfect"? What is meant by "tonal characteristics", "whole tone" and "semitone"? "Ancient tuning" vs potentially new?



    Answers need thoughtful explanations, revealing interconnectedness. In this context, mathematics is pivotal, explaining scale generation, temperament systems, etc.



    Divided into three parts, this book covers:




    • Modern interval arithmetic driven by prime numbers.

    • Architectural principles of scales, with examples.

    • Systematic nature of historical tunings and temperaments.



    Understanding only requires school knowledge, developed into algebraic tools applied musically.



     



    Prof. Dr. Karlheinz Schüffler is a mathematician, organist, and choir conductor. As a mathematician, he teaches at the University of Düsseldorf and previously at the Hochschule Niederrhein (Krefeld). As a musician, he has been dedicated to church music since his youth, with both organ and mathematical music theory being his areas of expertise.



    The translation was done with the help of artificial intelligence. A subsequent human revision was done primarily in terms of content.



    This book is a translation of an original German edition. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation.

    Több

    Hosszú leírás:

    Are musical scales just trivial? This book explores this question, revealing the complexity of creating "harmony" in tonal systems.



    Why 12 tones? Are there alternatives? Are 12 fifths equal 7 octaves? What is "consonance"? When are intervals "perfect" or "imperfect"? What is meant by "tonal characteristics", "whole tone" and "semitone"? "Ancient tuning" vs potentially new?



    Answers need thoughtful explanations, revealing interconnectedness. In this context, mathematics is pivotal, explaining scale generation, temperament systems, etc.



    Divided into three parts, this book covers:




    • Modern interval arithmetic driven by prime numbers.

    • Architectural principles of scales, with examples.

    • Systematic nature of historical tunings and temperaments.



    Understanding only requires school knowledge, developed into algebraic tools applied musically.



     

    Több

    Tartalomjegyzék:

    Part I: Mathematical Theory of Intervals. Musical intervals and tones.- The commensurability of musical intervals.- Harmonic-rational and classical-antique intervals. - Iterations and their music-mathematical laws.- Part II: Mathematical Theory of Scales. Scales and their models.- Combinatorial games surrounding characteristics.- Diatonic and chromatic aspects of the circle of fifths.- Part III: Mathematical Temperament Theory. The Pythagorean interval system.- Meantone temperament.- The natural-harmonic system and enharmonics.- Equal temperament and its intriguing context.- Epilogue ? Postlude.- Indexes.

    Több
    Mostanában megtekintett
    previous
    Musical Scales and their Mathematics

    Musical Scales and their Mathematics

    Schüffler, Karlheinz;

    29 498 Ft

    next