• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Multivariate Statistical Analysis in the Real and Complex Domains

    Multivariate Statistical Analysis in the Real and Complex Domains by Mathai, Arak M.; Provost, Serge B.; Haubold, Hans J.;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 69.54
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        29 498 Ft (28 094 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 5 900 Ft off)
      • Discounted price 23 599 Ft (22 475 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2022
    • Kiadó Springer
    • Megjelenés dátuma 2022. október 6.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783030958633
    • Kötéstípus Keménykötés
    • Terjedelem921 oldal
    • Méret 279x210 mm
    • Súly 2540 g
    • Nyelv angol
    • Illusztrációk 3 Illustrations, black & white
    • 443

    Kategóriák

    Rövid leírás:

    This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward. 


    This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout.

    Több

    Hosszú leírás:

    This book explores topics in multivariate statistical analysis, relevant in the real and complex domains. It utilizes simplified and unified notations to render the complex subject matter both accessible and enjoyable, drawing from clear exposition and numerous illustrative examples. The book features an in-depth treatment of theory with a fair balance of applied coverage, and a classroom lecture style so that the learning process feels organic. It also contains original results, with the goal of driving research conversations forward.


    This will be particularly useful for researchers working in machine learning, biomedical signal processing, and other fields that increasingly rely on complex random variables to model complex-valued data. It can also be used in advanced courses on multivariate analysis. Numerous exercises are included throughout.

    Több

    Tartalomjegyzék:

    1. Mathematical Preliminaries.- 2. The Univariate Gaussian and Related Distribution.- 3. Multivariate Gaussian and Related Distributions.- 4. The Matrix-variate Gaussian Distribution.- 5. Matrix-variate Gamma and Beta Distributions.- 6. Hypothesis Testing and Null Distributions.- 7. Rectangular Matrix-variate Distributions.- 8. Distributions of Eigenvalues and Eigenvectors.- 9. Principal Component Analysis.- 10. Canonical Correlation Analysis.- 11. Factor Analysis.- 12. Classification Problems.- 13. Multivariate Analysis of Variance (MANOVA).- 14. Profile Analysis and Growth Curves.- 15. Cluster Analysis and Correspondence Analysis.

    Több
    Mostanában megtekintett
    previous
    Multivariate Statistical Analysis in the Real and Complex Domains

    Multivariate Statistical Analysis in the Real and Complex Domains

    Mathai, Arak M.; Provost, Serge B.; Haubold, Hans J.;

    29 498 Ft

    next