• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Moduli Spaces, Virtual Invariants and Shifted Symplectic Structures

    Moduli Spaces, Virtual Invariants and Shifted Symplectic Structures by Kiem, Young-Hoon;

    Sorozatcím: KIAS Springer Series in Mathematics; 4;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 149.79
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        63 540 Ft (60 515 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 12 708 Ft off)
      • Discounted price 50 833 Ft (48 412 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2024
    • Kiadó Springer
    • Megjelenés dátuma 2025. március 26.
    • Kötetek száma 1 pieces, Book

    • ISBN 9789819782482
    • Kötéstípus Keménykötés
    • Terjedelem254 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk 2 Illustrations, black & white
    • 690

    Kategóriák

    Rövid leírás:

    Enumerative geometry is a core area of algebraic geometry that dates back to Apollonius in the second century BCE. It asks for the number of geometric figures with desired properties and has many applications from classical geometry to modern physics. Typically, an enumerative geometry problem is solved by first constructing the space of all geometric figures of fixed type, called the moduli space, and then finding the subspace of objects satisfying the desired properties. Unfortunately, many moduli spaces from nature are highly singular, and an intersection theory is difficult to make sense of. However, they come with deeper structures, such as perfect obstruction theories, which enable us to define nice subsets, called virtual fundamental classes. Now, enumerative numbers, called virtual invariants, are defined as integrals against the virtual fundamental classes.



    Derived algebraic geometry is a relatively new area of algebraic geometry that is a natural generalization of Serre?s intersection theory in the 1950s and Grothendieck?s scheme theory in the 1960s. Many moduli spaces in enumerative geometry admit natural derived structures as well as shifted symplectic structures.



    The book covers foundations on derived algebraic and symplectic geometry. Then, it covers foundations on virtual fundamental classes and moduli spaces from a classical algebraic geometry point of view. Finally, it fuses derived algebraic geometry with enumerative geometry and covers the cutting-edge research topics about Donaldson?Thomas invariants in dimensions three and four.

    Több

    Hosszú leírás:

    Enumerative geometry is a core area of algebraic geometry that dates back to Apollonius in the second century BCE. It asks for the number of geometric figures with desired properties and has many applications from classical geometry to modern physics. Typically, an enumerative geometry problem is solved by first constructing the space of all geometric figures of fixed type, called the moduli space, and then finding the subspace of objects satisfying the desired properties. Unfortunately, many moduli spaces from nature are highly singular, and an intersection theory is difficult to make sense of. However, they come with deeper structures, such as perfect obstruction theories, which enable us to define nice subsets, called virtual fundamental classes. Now, enumerative numbers, called virtual invariants, are defined as integrals against the virtual fundamental classes.



    Derived algebraic geometry is a relatively new area of algebraic geometry that is a natural generalization of Serre?s intersection theory in the 1950s and Grothendieck?s scheme theory in the 1960s. Many moduli spaces in enumerative geometry admit natural derived structures as well as shifted symplectic structures.



    The book covers foundations on derived algebraic and symplectic geometry. Then, it covers foundations on virtual fundamental classes and moduli spaces from a classical algebraic geometry point of view. Finally, it fuses derived algebraic geometry with enumerative geometry and covers the cutting-edge research topics about Donaldson?Thomas invariants in dimensions three and four.

    Több

    Tartalomjegyzék:

    An Introduction to Derived Algebraic Geometry.- An Introduction to Shifted Symplectic Structures.- An Introduction to Virtual Cycles via Classical Algebraic Geometry.- An Introduction to Virtual Cycles via Derived Algebraic Geometry.- An Introduction to Cohomological Donaldson Thomas Theory.- Moduli Spaces of Sheaves: An Overview, Curves and Surfaces.- Sheaf Counting Theory in Dimension Three and Four.

    Több
    Mostanában megtekintett
    previous
    Moduli Spaces, Virtual Invariants and Shifted Symplectic Structures

    Moduli Spaces, Virtual Invariants and Shifted Symplectic Structures

    Kiem, Young-Hoon; (ed.)

    63 540 Ft

    next