
Modellreduktion
Eine systemtheoretisch orientierte Einführung
Sorozatcím: Springer Studium Mathematik (Master);
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 32.99
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 2 799 Ft off)
- Discounted price 11 195 Ft (10 662 Ft + 5% áfa)
13 994 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 2024
- Kiadó Springer Spektrum
- Megjelenés dátuma 2024. március 21.
- Kötetek száma 1 pieces, Book
- ISBN 9783662674925
- Kötéstípus Puhakötés
- Terjedelem259 oldal
- Méret 235x155 mm
- Nyelv német
- Illusztrációk 16 Illustrations, black & white; 47 Illustrations, color 589
Kategóriák
Rövid leírás:
Dieses Lehrbuch führt konsequent algorithmisch orientiert in die Modellreduktion linearer zeitinvarianter Systeme ein; der Fokus liegt hierbei auf systemtheoretischen Methoden. Insbesondere werden modales und balanciertes Abschneiden eingehend behandelt. Darüber hinaus werden Methoden des Momentenabgleichs basierend auf Krylovraumverfahren und rationaler Interpolation diskutiert. Dabei werden alle notwendigen Grundlagen sowohl aus der Systemtheorie als auch aus der numerischen linearen Algebra vorgestellt. Die Illustration der in diesem Buch vorgestellten Verfahren der Modellreduktion sowie einiger der notwendigen verwendeten Konzepte aus unterschiedlichen mathematischen Bereichen, erfolgt anhand einer Reihe von numerischen Beispielen. Dazu werden die mathematische Software MATLAB? und einige frei verfügbare Software-Pakete eingesetzt, so dass alle Beispiele nachvollzogen werden können.
Peter Benner ist Direktor am Max-Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg und leitet dort die Abteilung für Numerische Methoden in der System- und Regelungstheorie. Seine Forschungsinteressen umfassen die numerische lineare und multilineare Algebra, die optimale Steuerung dynamischer Systeme, sowie die System- und Regelungstheorie mit besonderem Fokus auf der Modellreduktion.
Heike Faßbender ist Professorin für Numerische Mathematik an der Technischen Universität Braunschweig und leitet dort das Institut für Numerische Mathematik. Ihre Forschungsinteressen umfassen die numerische (multi-)lineare Algebra, insbesondere (strukturierte) (nicht-)lineare Eigenwertprobleme und nichtlineare Matrixgleichungen, sowie deren Anwendung in der Modellreduktion.
Hosszú leírás:
Dieses Lehrbuch führt konsequent algorithmisch orientiert in die Modellreduktion linearer zeitinvarianter Systeme ein; der Fokus liegt hierbei auf systemtheoretischen Methoden. Insbesondere werden modales und balanciertes Abschneiden eingehend behandelt. Darüber hinaus werden Methoden des Momentenabgleichs, basierend auf Krylovraumverfahren und rationaler Interpolation, diskutiert. Dabei werden alle notwendigen Grundlagen sowohl aus der Systemtheorie als auch aus der numerischen linearen Algebra vorgestellt. Die Illustration der in diesem Buch vorgestellten Verfahren der Modellreduktion, sowie einiger der notwendigen, verwendeten Konzepte aus unterschiedlichen mathematischen Bereichen, erfolgt anhand einer Reihe von numerischen Beispielen. Dazu werden die mathematische Software MATLAB? und einige frei verfügbare Software-Pakete eingesetzt, so dass alle Beispiele nachvollzogen werden können.
TöbbTartalomjegyzék:
1 Einführung.- 2 LZI-Systeme.- 3 Einige Anwendungsbeispiele.- 4 Grundlagen aus der (numerischen) linearen Algebra.- 5 Modellreduktion durch Projektion.- 6 Modales Abschneiden.- 7 Grundlagen aus der System- und Regelungstheorie.- 8 Balanciertes Abschneiden (Balanced Truncation).- 9 Interpolatorische Modellreduktionsverfahren.- 10 Ausblick.- Sachverzeichnis.
Több
Modellreduktion: Eine systemtheoretisch orientierte Einführung
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
13 994 Ft