• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Mathematical Foundations for Data Analysis

    Mathematical Foundations for Data Analysis by Phillips, Jeff M.;

    Sorozatcím: Springer Series in the Data Sciences;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 58.84
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        24 959 Ft (23 771 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 1 997 Ft off)
      • Discounted price 22 963 Ft (21 869 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2021
    • Kiadó Springer
    • Megjelenés dátuma 2022. március 31.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783030623432
    • Kötéstípus Puhakötés
    • Terjedelem287 oldal
    • Méret 235x155 mm
    • Súly 474 g
    • Nyelv angol
    • Illusztrációk 1 Illustrations, black & white; 108 Illustrations, color
    • 300

    Kategóriák

    Rövid leírás:

    This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra.  Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.

    Több

    Hosszú leírás:

    This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra.  Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.



    ?This is certainly a timely book with large potential impact and appeal. ? the book is therewith accessible to a broad scientific audience including undergraduate students. ? Mathematical Foundations for Data Analysis provides a comprehensive exploration of the mathematics relevant to modern data science topics, with a target audience that is looking for an intuitive and accessible presentation rather than a deep dive into mathematical intricacies.? (Aretha L. Teckentrup, SIAM Review, Vol. 65 (1), March, 2023)

    ?The book is fairly compact, but a lot of information is presented in those pages. ? the book is pretty much self-contained, but prior knowledge of linear algebra and python programming would benefit anyone. The clear writing is backed in many instances by helpful illustrations. Color is used judiciously throughout the text to help differentiate between objects and highlight items of interest. ? Phillips? book is much more concise, but still discusses many different mathematical aspects of data science.? (David R. Gurney, MAA Reviews, September 5, 2021)

    Több

    Tartalomjegyzék:

    Probability review.- Convergence and sampling.- Linear algebra review.- Distances and nearest neighbors.- Linear Regression.- Gradient descent.- Dimensionality reduction.- Clustering.-  Classification.- Graph structured data.- Big data and sketching.

    Több
    Mostanában megtekintett
    previous
    Mathematical Foundations for Data Analysis

    Mathematical Foundations for Data Analysis

    Phillips, Jeff M.;

    24 959 Ft

    next