• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Logarithmic Potentials with External Fields

    Logarithmic Potentials with External Fields by Saff, Edward B.; Totik, Vilmos;

    Sorozatcím: Grundlehren der mathematischen Wissenschaften; 316;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 53.49
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        22 690 Ft (21 609 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 1 815 Ft off)
      • Discounted price 20 874 Ft (19 880 Ft + 5% áfa)

    Beszerezhetőség

    Bizonytalan a beszerezhetőség. Érdemes még egyszer keresni szerzővel és címmel. Ha nem talál másik, kapható kiadást, forduljon ügyfélszolgálatunkhoz!

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1997
    • Kiadó Springer
    • Megjelenés dátuma 1997. október 9.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783540570783
    • Kötéstípus Keménykötés
    • Terjedelem505 oldal
    • Méret 235x155 mm
    • Súly 2020 g
    • Nyelv angol
    • Illusztrációk XV, 505 p. Illustrations, black & white
    • 0

    Kategóriák

    Hosszú leírás:

    In recent years approximation theory and the theory of orthogonal polynomials have witnessed a dramatic increase in the number of solutions of difficult and previously untouchable problems. This is due to the interaction of approximation theoretical techniques with classical potential theory (more precisely, the theory of logarithmic potentials, which is directly related to polynomials and to problems in the plane or on the real line). Most of the applications are based on an exten­ sion of classical logarithmic potential theory to the case when there is a weight (external field) present. The list of recent developments is quite impressive and includes: creation of the theory of non-classical orthogonal polynomials with re­ spect to exponential weights; the theory of orthogonal polynomials with respect to general measures with compact support; the theory of incomplete polynomials and their widespread generalizations, and the theory of multipoint Pade approximation. The new approach has produced long sought solutions for many problems; most notably, the Freud problems on the asymptotics of orthogonal polynomials with a respect to weights of the form exp(-Ixl ); the "l/9-th" conjecture on rational approximation of exp(x); and the problem of the exact asymptotic constant in the rational approximation of Ixl. One aim of the present book is to provide a self-contained introduction to the aforementioned "weighted" potential theory as well as to its numerous applications. As a side-product we shall also fully develop the classical theory of logarithmic potentials.

    In recent years approximation theory and the theory of orthogonal polynomials have witnessed a dramatic increase in the number of solutions of difficult and previously untouchable problems. This is due to the interaction of approximation theoretical techniques with classical potential theory (more precisely, the theory of logarithmic potentials, which is directly related to polynomials and to problems in the plane or on the real line). Most of the applications are based on an exten­ sion of classical logarithmic potential theory to the case when there is a weight (external field) present. The list of recent developments is quite impressive and includes: creation of the theory of non-classical orthogonal polynomials with re­ spect to exponential weights; the theory of orthogonal polynomials with respect to general measures with compact support; the theory of incomplete polynomials and their widespread generalizations, and the theory of multipoint Pade approximation. The new approach has produced long sought solutions for many problems; most notably, the Freud problems on the asymptotics of orthogonal polynomials with a respect to weights of the form exp(-Ixl ); the "l/9-th" conjecture on rational approximation of exp(x); and the problem of the exact asymptotic constant in the rational approximation of Ixl. One aim of the present book is to provide a self-contained introduction to the aforementioned "weighted" potential theory as well as to its numerous applications. As a side-product we shall also fully develop the classical theory of logarithmic potentials.

    Több

    Tartalomjegyzék:

    Preliminaries.
    - Weighted Potentials.
    - Recovery of Measures, Green Functions and Balayage.
    - Weighted Polynomials.
    - Determination of the Extremal Measure.
    - Extremal Point Methods.
    - Weights on the Real Line.
    - Applications Concerning Orthogonal Polynomials.
    - Signed Measures.

    Több
    Mostanában megtekintett
    previous
    Logarithmic Potentials with External Fields

    Logarithmic Potentials with External Fields

    Saff, Edward B.; Totik, Vilmos;

    22 690 Ft

    next
    0