• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Logarithmic Potentials with External Fields

    Logarithmic Potentials with External Fields by Saff, Edward B.; Totik, Vilmos;

    Sorozatcím: Grundlehren der mathematischen Wissenschaften; 316;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 192.59
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        81 696 Ft (77 806 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 6 536 Ft off)
      • Discounted price 75 161 Ft (71 582 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma Second Edition 2024
    • Kiadó Springer
    • Megjelenés dátuma 2024. október 5.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783031651328
    • Kötéstípus Keménykötés
    • Terjedelem594 oldal
    • Méret 235x155 mm
    • Nyelv angol
    • Illusztrációk XVI, 594 p. Illustrations, black & white
    • 761

    Kategóriák

    Rövid leírás:

    This is the second edition of an influential monograph on logarithmic potentials with external fields, incorporating some of the numerous advancements made since the initial publication.



    As the title implies, the book expands the classical theory of logarithmic potentials to encompass scenarios involving an external field. This external field manifests as a weight function in problems dealing with energy minimization and its associated equilibria. These weighted energies arise in diverse applications such as the study of electrostatics problems, orthogonal polynomials, approximation by polynomials and rational functions, as well as tools for analyzing the asymptotic behavior of eigenvalues for random matrices, all of which are explored in the book. The theory delves into diverse properties of the extremal measure and its logarithmic potentials, paving the way for various numerical methods.



    This new, updated edition has been thoroughly revised and is reorganized into three parts, Fundamentals, Applications and Generalizations, followed by the Appendices. Additions to the new edition include:




    • new material on the following topics: analytic and C? weights, differential and integral formulae for equilibrium measures, constrained energy problems, vector equilibrium problems, and a probabilistic approach to balayage and harmonic measures;

    • a new chapter entitled Classical Logarithmic Potential Theory, which conveniently summarizes the main results for logarithmic potentials without external fields;

    • several new proofs and sharpened forms of some main theorems;

    • expanded bibliographic and historical notes with dozens of additional references. 



    Aimed at researchers and students studying extremal problems and their applications, particularly those arising from minimizing specific integrals in the presence of an external field, this book assumes a firm grasp of fundamental real and complex analysis. It meticulously develops classical logarithmic potential theory alongside the more comprehensive weighted theory.

    Több

    Hosszú leírás:

    This is the second edition of an influential monograph on logarithmic potentials with external fields, incorporating some of the numerous advancements made since the initial publication.



    As the title implies, the book expands the classical theory of logarithmic potentials to encompass scenarios involving an external field. This external field manifests as a weight function in problems dealing with energy minimization and its associated equilibria. These weighted energies arise in diverse applications such as the study of electrostatics problems, orthogonal polynomials, approximation by polynomials and rational functions, as well as tools for analyzing the asymptotic behavior of eigenvalues for random matrices, all of which are explored in the book. The theory delves into diverse properties of the extremal measure and its logarithmic potentials, paving the way for various numerical methods.



    This new, updated edition has been thoroughly revised and is reorganized into three parts, Fundamentals, Applications and Generalizations, followed by the Appendices. Additions to the new edition include:




    • new material on the following topics: analytic and C? weights, differential and integral formulae for equilibrium measures, constrained energy problems, vector equilibrium problems, and a probabilistic approach to balayage and harmonic measures;

    • a new chapter entitled Classical Logarithmic Potential Theory, which conveniently summarizes the main results for logarithmic potentials without external fields;

    • several new proofs and sharpened forms of some main theorems;

    • expanded bibliographic and historical notes with dozens of additional references. 



    Aimed at researchers and students studying extremal problems and their applications, particularly those arising from minimizing specific integrals in the presence of an external field, this book assumes a firm grasp of fundamental real and complex analysis. It meticulously develops classical logarithmic potential theory alongside the more comprehensive weighted theory.

    Több

    Tartalomjegyzék:

    Part 1 Fundamentals. I Weighted Potentials.- II Recovery of Measures, Green Functions and Balayage.- III Weighted Polynomials.- IV Determination of the Extremal Measure.- Part 2 Applications and Generalizations.- V Extremal Point Methods.- VI Weights on the Real Line.- VII Applications Concerning Orthogonal Polynomials.- VIII Signed Measures.- IX Some Problems from Physics.- X Generalizations.- Part 3 Appendices.- A.I Basic Tools.- A.II The Dirichlet Problem and Harmonic Measures.- A.III Weighted approximation in ??.- A.IV Classical Logarithmic Potential Theory.

    Több