• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • LMSST: 24 Lectures on Elliptic Curves

    LMSST: 24 Lectures on Elliptic Curves by Cassels, J. W. S.;

    Sorozatcím: London Mathematical Society Student Texts; 24;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 38.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        19 231 Ft (18 316 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 3 846 Ft off)
      • Kedvezményes ár 15 385 Ft (14 653 Ft + 5% áfa)

    19 231 Ft

    db

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Cambridge University Press
    • Megjelenés dátuma 1991. november 21.

    • ISBN 9780521425308
    • Kötéstípus Puhakötés
    • Terjedelem144 oldal
    • Méret 227x150x10 mm
    • Súly 191 g
    • Nyelv angol
    • Illusztrációk 5 b/w illus.
    • 0

    Kategóriák

    Rövid leírás:

    A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.

    Több

    Hosszú leírás:

    The study of (special cases of) elliptic curves goes back to Diophantos and Fermat, and today it is still one of the liveliest centres of research in number theory. This book, which is addressed to beginning graduate students, introduces basic theory from a contemporary viewpoint but with an eye to the historical background. The central portion deals with curves over the rationals: the Mordell-Weil finite basis theorem, points of finite order (Nagell-Lutz) etc. The treatment is structured by the local-global standpoint and culminates in the description of the Tate-Shafarevich group as the obstruction to a Hasse principle. In an introductory section the Hasse principle for conics is discussed. The book closes with sections on the theory over finite fields (the 'Riemann hypothesis for function fields') and recently developed uses of elliptic curves for factoring large integers. Prerequisites are kept to a minimum; an acquaintance with the fundamentals of Galois theory is assumed, but no knowledge either of algebraic number theory or algebraic geometry is needed. The p-adic numbers are introduced from scratch, as is the little that is needed on Galois cohomology. Many examples and exercises are included for the reader. For those new to elliptic curves, whether they are graduate students or specialists from other fields, this will be a fine introductory text.

    '... an excellent introduction ... written with humour.' Monatshefte f&&&252;r Mathematik

    Több

    Tartalomjegyzék:

    Introduction; 1. Curves of genus: introduction; 2. p-adic numbers; 3. The local-global principle for conics; 4. Geometry of numbers; 5. Local-global principle: conclusion of proof; 6. Cubic curves; 7. Non-singular cubics: the group law; 8. Elliptic curves: canonical form; 9. Degenerate laws; 10. Reduction; 11. The p-adic case; 12. Global torsion; 13. Finite basis theorem: strategy and comments; 14. A 2-isogeny; 15. The weak finite basis theorem; 16. Remedial mathematics: resultants; 17. Heights: finite basis theorem; 18. Local-global for genus principle; 19. Elements of Galois cohomology; 20. Construction of the jacobian; 21. Some abstract nonsense; 22. Principle homogeneous spaces and Galois cohomology; 23. The Tate-Shafarevich group; 24. The endomorphism ring; 25. Points over finite fields; 26. Factorizing using elliptic curves; Formulary; Further reading; Index.

    Több