
Lectures on Nonsmooth Optimization
Sorozatcím: Texts in Applied Mathematics; 82;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 181.89
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 15 431 Ft off)
- Discounted price 61 726 Ft (58 786 Ft + 5% áfa)
77 157 Ft
Beszerezhetőség
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Springer
- Megjelenés dátuma 2025. július 14.
- Kötetek száma 1 pieces, Book
- ISBN 9783031914164
- Kötéstípus Keménykötés
- Terjedelem475 oldal
- Méret 235x155 mm
- Nyelv angol
- Illusztrációk X, 475 p. Illustrations, black & white 700
Kategóriák
Rövid leírás:
This book provides an in-depth exploration of nonsmooth optimization, covering foundational algorithms, theoretical insights, and a wide range of applications. Nonsmooth optimization, characterized by nondifferentiable objective functions or constraints, plays a crucial role across various fields, including machine learning, imaging, inverse problems, statistics, optimal control, and engineering. Its scope and relevance continue to expand, as many real-world problems are inherently nonsmooth or benefit significantly from nonsmooth regularization techniques. This book covers a variety of algorithms for solving nonsmooth optimization problems, which are foundational and recent. It first introduces basic facts on convex analysis and subdifferetial calculus, various algorithms are then discussed, including subgradient methods, mirror descent methods, proximal algorithms, alternating direction method of multipliers, primal dual splitting methods and semismooth Newton methods. Moreover, error bound conditions are discussed and the derivation of linear convergence is illustrated. A particular chapter is delved into first order methods for nonconvex optimization problems satisfying the Kurdyka-Lojasiewicz condition. The book also addresses the rapid evolution of stochastic algorithms for large-scale optimization. This book is written for a wide-ranging audience, including senior undergraduates, graduate students, researchers, and practitioners who are interested in gaining a comprehensive understanding of nonsmooth optimization.
TöbbHosszú leírás:
This book provides an in-depth exploration of nonsmooth optimization, covering foundational algorithms, theoretical insights, and a wide range of applications. Nonsmooth optimization, characterized by nondifferentiable objective functions or constraints, plays a crucial role across various fields, including machine learning, imaging, inverse problems, statistics, optimal control, and engineering. Its scope and relevance continue to expand, as many real-world problems are inherently nonsmooth or benefit significantly from nonsmooth regularization techniques. This book covers a variety of algorithms for solving nonsmooth optimization problems, which are foundational and recent. It first introduces basic facts on convex analysis and subdifferetial calculus, various algorithms are then discussed, including subgradient methods, mirror descent methods, proximal algorithms, alternating direction method of multipliers, primal dual splitting methods and semismooth Newton methods. Moreover, error bound conditions are discussed and the derivation of linear convergence is illustrated. A particular chapter is delved into first order methods for nonconvex optimization problems satisfying the Kurdyka-Lojasiewicz condition. The book also addresses the rapid evolution of stochastic algorithms for large-scale optimization. This book is written for a wide-ranging audience, including senior undergraduates, graduate students, researchers, and practitioners who are interested in gaining a comprehensive understanding of nonsmooth optimization.
TöbbTartalomjegyzék:
Preface.- Introduction.- Convex sets and convex functions.- Subgradient and mirror descent methods.- Proximal algorithms.- Karush-Kuhn-Tucker theory and Lagrangian duality.- ADMM: alternating direction method of multipliers.- Primal dual splitting algorithms.- Error bound conditions and linear convergence.- Optimization with Kurdyka- Lojasiewicz property.- Semismooth Newton methods.- Stochastic algorithms.- References.- Index.
Több
Lectures on Nonsmooth Optimization
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
77 157 Ft

Modern Computational Methods for Fractional Differential Equations
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
63 262 Ft

New Trends and Challenges in Optimization Theory Applied to Space Engineering: OTSE Conference Proceedings, 13?15 December 2023, L'Aquila (Italy)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
90 774 Ft

Physics Illuminated For 'A' Levels (Volume 1)
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
40 488 Ft

Smart Technologies for Climate Change and Net Zero Policies: Practical Approaches Towards Sustainability
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
77 157 Ft

Dynamic Soil Properties and Liquefaction: Select Proceedings of 8th ICRAGEE 2024
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
104 391 Ft