• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    (In-)Stability of Differential Inclusions: Notions, Equivalences, and Lyapunov-like Characterizations

    (In-)Stability of Differential Inclusions by Braun, Philipp; Grüne, Lars; Kellett, Christopher M.;

    Notions, Equivalences, and Lyapunov-like Characterizations

    Sorozatcím: SpringerBriefs in Mathematics;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 74.89
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        31 768 Ft (30 255 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 2 541 Ft off)
      • Discounted price 29 226 Ft (27 835 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2021
    • Kiadó Springer
    • Megjelenés dátuma 2021. július 13.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783030763169
    • Kötéstípus Puhakötés
    • Terjedelem116 oldal
    • Méret 235x155 mm
    • Súly 209 g
    • Nyelv angol
    • Illusztrációk 1 Illustrations, black & white; 15 Illustrations, color
    • 228

    Kategóriák

    Rövid leírás:

    Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.

    Több

    Hosszú leírás:

    Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.




    ?The book is written in a clear, rigorous and alive style. The results are illustrated by numerous examples.? (Aurelian Cernea, zbMATH 1482.34002, 2022)

    Több

    Tartalomjegyzék:

    1 Introduction.- 2 Mathematical Setting & Motivation.- 3 Strong (in)stability of differential inclusions & Lyapunov characterizations.- 4 Weak (in)stability of differential inclusions & Lyapunov characterizations.- 5 Outlook & Further Topics.- 6 Proofs of the Main Results.- 7 Auxiliary results.- 8 Conclusions.

    Több
    Mostanában megtekintett
    previous
    (In-)Stability of Differential Inclusions: Notions, Equivalences, and Lyapunov-like Characterizations

    (In-)Stability of Differential Inclusions: Notions, Equivalences, and Lyapunov-like Characterizations

    Braun, Philipp; Grüne, Lars; Kellett, Christopher M.;

    31 768 Ft

    next