• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Handbook of Translational Transcriptomics: Research, Protocols and Applications

    Handbook of Translational Transcriptomics by Buzdin, Anton;

    Research, Protocols and Applications

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 153.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        65 322 Ft (62 211 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 6 532 Ft off)
      • Discounted price 58 789 Ft (55 990 Ft + 5% áfa)

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Academic Press
    • Megjelenés dátuma 2025. április 25.

    • ISBN 9780443191107
    • Kötéstípus Puhakötés
    • Terjedelem512 oldal
    • Méret 235x191 mm
    • Nyelv angol
    • 700

    Kategóriák

    Hosszú leírás:

    Handbook of Translational Transcriptomics: Research, Protocols and Applications provides a comprehensive overview of the field of transcriptomics. With an emphasis on the various protocols and techniques available for investigation, it acts as a practical guide to researchers for implementing their own investigations in the field.

    This book begins with an overview of the past, present, and potential approaches in the field of transcriptomics, with discussions of choosing the correct approach based on the research needed. It also highlights the pros and cons of each approach. Following this, it explores techniques and protocols for investigating specific approaches focusing on RNA sequencing, expression arrays, and gene expression. It then delves into data analysis and offers recommendations, guidelines, and approaches related to data interpretation. This book also considers the translation of transcriptomics to clinical use and applications in molecular diagnostics, biomarkers in medicine, and personalized medicine specific to oncology, as well as biotechnology for pharmaceutical research.

    Handbook of Translational Transcriptomics: Research, Protocols and Applications is a detailed reference that provides a complete view of transcriptomics, ranging from methods to handling data and medical applications. This book is an invaluable guide for researchers working across molecular biology, genetics, bioinformatics and related fields, as well as graduate and PhD students in these areas.




    • Features practical guidance and protocols for researchers to replicate transcriptomic methods and techniques, including wet lab techniques.
    • Includes useful information on analyzing and interpreting transcriptomic data.
    • Offers a detailed introduction into translational transcriptomics, exploring both coding and noncoding RNAs including microRNA.
    • Investigates clinical implications of transcriptomics and applications to treating disease.
    • Considers some experimental and bioinformatic techniques in the field of transcriptomics, as well as more established approaches.

    Több

    Tartalomjegyzék:

    Contributors
    Acknowledgments

    1. Past, current, and future of transcriptomics
    Xinmin Li, Ilya Belalov, and Anton Buzdin

    1.1 Introduction
    1.2 Historical development
    1.3 Methodological advancements
    1.4 Microarrays
    1.5 RNA sequencing (RNA-seq)
    1.6 Single-cell RNA sequencing (scRNA-seq)
    1.7 Spatial transcriptomics
    1.8 Noncoding RNAs in gene regulation
    1.9 MicroRNAs (miRNAs)
    1.10 Long noncoding RNAs (lncRNAs)
    1.11 Regulatory networks
    1.12 Single-cell and spatial transcriptomics in understanding cellular heterogeneity
    1.13 Single-cell transcriptomics
    1.14 Spatial transcriptomics
    1.15 Insights and applications
    1.16 Challenges and future directions
    1.17 Emerging trends and future directions in transcriptomics
    1.18 RNA sequencing (RNA-seq) and beyond
    1.19 Dual RNA-seq for host-pathogen interactions
    1.20 Transcriptomics in food microbiology and agriculture
    1.21 Multi-omics integration
    1.22 Single-cell transcriptomics
    1.23 Challenges and future prospects
    1.24 Current challenges and controversies in transcriptomics
    1.25 Technical limitations and data complexity
    1.26 Interpretation of dual RNA-seq data
    1.27 Environmental influences on transcriptomic profiles
    1.28 Transcriptomics in food microbiology and safety
    1.29 Toxicogenomics and risk assessment
    1.30 Functional annotation and novel transcripts
    1.31 Conclusion
    References

    2. Pitfalls of transcriptomics and selection of the most appropriate transcriptomic technique
    Xinmin Li, Ilya Belalov, and Anton Buzdin

    2.1 Introduction
    2.2 Pitfalls in specific transcriptomic techniques
    2.3 Choosing the right tool for the job
    2.4 Case studies and examples
    2.5 Addressing pitfalls and challenges: Insights from recent research
    2.6 Future directions in transcriptomics
    2.7 Practical considerations and conclusion
    References
    Further reading

    3. Bulk RNA sequencing in wet lab
    Anton Buzdin, Ilya Belalov, Maria Suntsova, and Xinmin Li

    3.1 Introduction to bulk RNA sequencing
    3.2 Fundamental principles of bulk RNA sequencing
    3.3 Key technologies and methodologies in bulk RNA sequencing
    3.4 Sample collection and storage
    3.5 RNA extraction and purification
    3.6 Quality control measures
    3.7 Library preparation for bulk RNA sequencing
    3.8 Early barcoding and cost efficiency
    3.9 Direct RNA isolation strategies
    3.10 Sequencing platforms and technologies
    3.11 RNA sequencing protocols
    3.12 Overview of advanced RNA sequencing protocols
    3.13 Reagents and equipment for bulk RNA sequencing
    3.14 Technical and analytical quality control in RNA sequencing
    3.15 Bioinformatics and data analysis
    3.16 Data preprocessing and normalization methods for bulk RNA sequencing
    3.17 Sequencing depth and coverage in bulk RNA sequencing
    3.18 Differential expression analysis in RNA sequencing
    3.19 Functional genomics and pathway analysis in RNA sequencing
    3.20 Emerging applications of bulk RNA sequencing in disease research, immunology, and oncology
    3.21 Challenges and limitations of current RNA sequencing methodologies
    3.22 Future directions and technologies in RNA sequencing
    3.23 Best practices for bulk RNA sequencing in the wet lab
    3.24 Ethical considerations in transcriptomics research
    3.25 Conclusion
    References

    4. Single-cell RNA sequencing in wet lab
    Anton Buzdin, Xinmin Li, Maria Suntsova, and Ilya Belalov

    4.1 Overview of what scRNA-seq is and why it is indispensable in research
    4.2 Types of scRNA-seq protocols
    4.3 Reagents and materials
    4.4 scRNA-seq platforms: Comparison of chromium 10X, Drop-seq, and Smart-seq
    4.5 Sample preparation and handling
    4.6 Single-cell isolation techniques
    4.7 Library preparation
    4.8 Sequencing technologies
    4.9 Techniques to ensure the integrity and quality of scRNA-seq data
    4.10 Data analysis methods to validate the quality of sequencing results
    4.11 Recommended sequencing depths for different types of analyses
    4.12 Overview of computational tools and methods for analyzing scRNA-seq data
    4.13 Integrating scRNA-seq data with other data types
    4.14 Research and clinical applications of scRNA-seq
    4.15 Innovations and future trends in scRNA-seq technology
    References
    Further reading

    5. Spatial transcriptomics
    Ilya Belalov, Ye Wang, Anton Buzdin, and Xinmin Li

    5.1 Introduction
    5.2 Spatial transcriptomics technologies
    5.3 Imaging-based technologies
    5.4 Sequencing-based technologies
    5.5 Applications for basic, translational, and clinical research
    5.6 Considerations for a first ST experiment
    5.7 Concluding remarks
    References

    6. High-throughput and multiplex PCR in wet laboratory to measure gene expression
    Anton Buzdin, Ilya Belalov, and Galina Zakharova

    6.1 Introduction
    6.2 Importance of high-throughput and multiplex PCR
    6.3 Protocols for high-throughput and multiplex PCR
    6.4 Reagents and requirements for material
    6.5 Material requirements
    6.6 Technical and analytical quality control (QC)
    6.7 Analytical QC
    6.8 Dynamic intervals and sensitivity
    6.9 Sensitivity and specificity
    6.10 Applications and sequencing depth recommendations
    6.11 Recommended sequencing depths
    6.12 Key studies and contributions
    6.13 Further reading
    6.14 Future directions and innovations
    6.15 Challenges and limitations
    6.16 Conclusion
    References

    7. Processing primary gene expression data: Normalization, harmonization and data quality control
    Nicolas Borisov, Maksim Sorokin, and Anton Buzdin

    7.1 Background
    7.2 Principles of harmonization algorithms
    7.3 Evaluation of the quality of harmonization
    7.4 Validation of Shambhala-1/2 protocol on bulk mRNA-seq profiles
    7.5 Differential clustering of human normal and cancer expression profiles
    7.6 Correlation, regression, and sign-change analysis of cancer drug balanced efficiency scores after application of different methods of harmonization
    7.7 Retention of biological properties after uniformly shaped harmonization
    7.8 Validation of Shambhala-1/2 protocol on sc-mRNA-seq profiles
    7.9 Discussion
    Abbreviations
    References

    8. Data check and differential gene analysis
    Maksim Sorokin and Anton Buzdin

    8.1 Primary RNA expression data analysis
    8.2 Finding differentially expressed genes and gene sets
    8.3 Concluding remarks
    References

    9. Molecular pathway analysis using transcriptomic data
    Nicolas Borisov, Maksim Sorokin, Igor Kovalchuk, Marianna Zolotovskaia, and Anton Buzdin

    9.1 Background
    9.2 Topology-based methods for pathway activation assessment
    9.3 Methods for database preparation for pathway activation assessment
    9.4 Personalized ranking of cancer drugs based on pathway activation levels
    9.5 Concluding remarks
    Abbreviations
    References

    10. Omics wise analysis of RNA splicing
    Alexander Modestov, Anton Buzdin, and Vladimir Prassolov

    10.1 Introduction
    10.2 Omics technologies for RNA splicing analysis
    10.3 RNA splicing products and regulators as biomarkers and targets of therapy
    10.4 Challenges and future prospects
    References

    11. Transcriptome-wide analysis of protein synthesis: Ribosome profiling and beyond
    Sergey E. Dmitriev, Daniil Luppov, Leonid M. Kats, Aleksandra S. Anisimova, and Ilya M. Terenin

    11.1 Introduction
    11.2 Ribosome profiling quantifies gene expression at the translational level
    11.3 Ribosome profiling deciphers cryptic coding potential of the genome
    11.4 Analyses of ribosome positional distribution and transcriptome-wide metagene profile reveal new phenomena
    11.5 Molecular mechanisms revealed by variants of ribosome profiling and relative methods
    11.6 Technical challenges, limitations, and artifacts in ribosome profiling studies
    11.7 Ribosome profiling of cultured mammalian cells: An example protocol
    Acknowledgments
    References
    Further readings

    12. Transcriptomic biomarkers in biomedicine
    Anton Buzdin, Alf Giese, Xinmin Li, and Ye Wang

    12.1 Theoretical background
    12.2 Molecular pathway biomarkers in oncology
    12.3 Other applications of pathway biomarker analysis in biomedicine
    12.4 Conclusion
    References

    13. Translational transcriptomics for personalized oncology
    Anton Buzdin, Alexander Seryakov, Marianna Zolotovskaia, Maksim Sorokin, Victor Tkachev, Alf Giese, Marina Sekacheva, Elena Poddubskaya, Julian Rozenberg, and Tharaa Mohammad

    13.1 Transcriptomics in clinical oncology
    13.2 Detection of oncogenic fusion events
    13.3 Detection of pathogenic splicing or exon skipping events
    13.4 Gene signatures
    13.5 Algorithmic approach in personalized oncology
    13.6 Molecular pathway approach for personalized prediction of cancer drug efficacy
    13.7 Concluding remarks
    References

    14. Transcriptomics for modern biotechnology
    Anton Buzdin, Denis Kuzmin, Andrew Garazha, and Ilya Belalov

    14.1 Introduction
    14.2 High-throughput transcriptomic pipelines
    14.3 Oncobox pathway activation levels quantization
    14.4 Connectivity map assay
    14.5 Databases and software for transcriptomic analysis
    14.6 Industrial and startup landscape
    14.7 Case studies and recent advances
    14.8 Conclusion
    References

    15. Transcriptomics and quantitative proteomics: Competition or symbiosis?
    Anton Buzdin, Sergey Moshkovskii, Xinmin Li, and Ilya Belalov

    15.1 Introduction
    15.2 Rationale for direct protein level measurement
    15.3 Current progress in quantitative proteomics
    15.4 Quality metrics comparison
    15.5 Gene products interrogated
    15.6 Integration of multi-omics data
    15.7 Future perspectives
    15.8 Conclusion
    References

    16. Quality assessment of differentially expressed gene signatures
    Alexey Stupnikov and Anton Buzdin

    16.1 Introduction
    16.2 Conclusions
    Acknowledgments
    References

    17. Detection of fusion transcripts by RNA-sequencing data
    Ivan Musatov, Maksim Sorokin, and Anton Buzdin

    17.1 Introduction
    17.2 Basic software methods for detecting fusion genes
    17.3 Algorithms based on alignment. STAR and STAR-Fusion
    17.4 LongGF
    17.5 Pros and cons of existing tools for bioinformatic fusion detection
    17.6 Prospects for the development of tools and approaches to search for fusion transcripts
    17.7 Conclusion
    References

    Index

    Több