• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Glycoside Hydrolases: Biochemistry, Biophysics, and Biotechnology

    Glycoside Hydrolases by Goyal, Arun; Sharma, Kedar;

    Biochemistry, Biophysics, and Biotechnology

    Sorozatcím: Foundations and Frontiers in Enzymology;

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 155.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        65 751 Ft (62 620 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 6 575 Ft off)
      • Discounted price 59 176 Ft (56 358 Ft + 5% áfa)

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadó Academic Press
    • Megjelenés dátuma 2023. május 15.

    • ISBN 9780323918053
    • Kötéstípus Puhakötés
    • Terjedelem424 oldal
    • Méret 234x190 mm
    • Súly 890 g
    • Nyelv angol
    • 512

    Kategóriák

    Hosszú leírás:

    Glycoside Hydrolases provides a detailed overview of the biochemical, biophysical, and protein engineering properties of glycoside hydrolases, a class of enzymes in growing use across various applications. Here, more than a dozen global experts discuss the structural and catalytic mechanisms of specific glycoside hydrolases, followed by their implications in biotechnological applications of different industrial sectors such as the food and feed industry, paper and pulp industry, the bioenergy sector and the pharmaceutical industry. Authors consider how the application of glycoside hydrolases may boost industrial production of valued products, and the broader environmental and sustainability goals of converting agrowaste into valued products. This book helps researchers and students across industry and academia gain deep knowledge of glycoside hydrolases, to advance new experimental research and applications from biofuel to drug discovery.

    Több

    Tartalomjegyzék:

    Contributors
    About the Editors
    Preface

    CHAPTER 1 Carbohydrates and Carbohydrate-Active enZymes (CAZyme): An overview
    Parmeshwar Vitthal Gavande, Arun Goyal, and Carlos M.G.A. Fontes

    1.1 Introduction
    1.1.1 Various carbohydrate polymers present in nature
    1.1.2 Natural source of polysaccharides
    1.1.3 Requirement for deconstruction of carbohydrates
    1.1.4 Carbohydrate-active enzymes
    1.1.5 Carbohydrate-active enzyme database (CAZy)
    1.1.6 Multienzyme complexes of CAZyme: The cellulosome
    1.1.7 Commercially available CAZyme libraries
    1.2 Conclusion
    References

    CHAPTER 2 Glycoside hydrolases: Mechanisms, specificities, and engineering
    Antoni Planas

    2.1 Structures, functions, and classifications
    2.2 Glycosidase mechanisms for hydrolysis of glycans and glycoconjugates
    2.2.1 General mechanisms: Inverting vs. retaining
    2.2.2 Retaining glycosidases with enzyme nucleophile: Ring distortion and covalent intermediate
    2.2.3 Retaining glycosidases by substrate-assisted catalysis: Oxazoline/oxazolonium intermediate
    2.2.4 Retaining glycosidases by neighboring-group participation through a 1,2-epoxide intermediate
    2.2.5 Retaining glycosidases by an unusual NAD+-dependent mechanism
    2.2.6 Inverting glycosidases
    2.3 Protein engineering of glycosidases for improved and novel properties
    2.3.1 Thermostability
    2.3.2 Substrate specificity
    2.4 Glycosidases acting in reverse for glycosynthesis: Transglycosidases and glycosynthases
    2.4.1 Transglycosidases
    2.4.2 Glycosynthases
    2.5 Concluding remarks
    References

    CHAPTER 3 Endo-?-1,4-glucanase
    Parmeshwar Vitthal Gavande and Arun Goyal

    3.1 Introduction
    3.1.1 Cellulase
    3.1.2 Cellulase evolution and conservation in nature
    3.1.3 Endo-?-1,4-glucanase
    3.1.4 Exoglucanase
    3.1.5 ?-glucosidase
    3.1.6 Cellulosome
    3.2 Endoglucanases belong to various GH families
    3.2.1 GH5 family
    3.2.2 GH6 family
    3.2.3 GH7 family
    3.2.4 GH8 family
    3.2.5 GH9 family
    3.2.6 GH12 family
    3.2.7 GH44 family
    3.2.8 GH45 family
    3.2.9 GH48 family
    3.3 Synergism of endo-?-1,4-glucanase with exoglucanase and ?-glucosidase
    3.4 Endo-?-1,4-glucanase-producing microorganisms
    3.4.1 Biochemical properties, kinetics, and catalytic efficiency of endoglucanases
    3.5 Structure of endo-?-1,4-glucanases
    3.5.1 Mechanism of cellulose hydrolysis in endoglucanases
    3.6 Multifunctionality of endoglucanases
    3.6.1 Broad substrate specificity of various endoglucanases
    3.6.2 Significance of multifunctional endoglucanases
    3.7 Processivity of endoglucanases
    3.8 Applications of endoglucanases
    3.9 Conclusion
    Authors' contribution
    References

    CHAPTER 4 Cellobiohydrolases
    Tulika Sinha, Kanika Sharma, and Syed Shams Yazdani

    4.1 Introduction
    4.2 Structure and mode of action of cellobiohydrolases
    4.2.1 The catalytic domain (CD)
    4.2.2 The carbohydrate-binding module (CBM)
    4.2.3 The linker
    4.2.4 The dissociation mechanism of processive CBH1
    4.3 Biochemical and biophysical properties of cellobiohydrolases
    4.3.1 pH and temperature
    4.3.2 Metal ions
    4.3.3 Surfactants
    4.4 Protein engineering and strain improvement for higher enzyme activity and productivity
    4.4.1 Enhanced activity
    4.4.2 Enhanced thermostability
    4.4.3 Enhanced performance in nonconventional media
    4.4.4 Engineering cellulase for pH stability
    4.5 Industrial applications of CBH
    4.5.1 Bioconversion
    4.5.2 Pulp and paper industry
    4.5.3 Food processing industry
    4.5.4 Textile industry
    4.5.5 Agriculture
    4.5.6 Animal feed
    4.5.7 Detergent industry
    4.6 Conclusion and future perspective
    References

    CHAPTER 5 ?-Glucosidase: Structure, function and industrial applications
    Sauratej Sengupta, Maithili Datta, and Supratim Datta

    5.1 Introduction
    5.2 Classification
    5.3 Structure
    5.4 Reaction mechanism
    5.4.1 Substrate recognition and specificity
    5.4.2 Glycone and aglycone specificity
    5.5 Function and distribution
    5.6 Characteristics
    5.6.1 Biophysical characteristics
    5.6.2 Biochemical characteristics
    5.6.3 Product inhibition and enhancement of activity in the presence of glucose
    5.6.4 Substrate inhibition
    5.7 Industrial applications
    5.7.1 Biofuels
    5.7.2 Food industry
    5.7.3 Pharmaceutical industries
    Acknowledgments
    References

    CHAPTER 6 Endo-?-1,3-glucanase
    Parmeshwar Vitthal Gavande and Arun Goyal

    6.1 Introduction
    6.2 The role of endo-?-1,3-glucanase in nature
    6.2.1 ?-1,3-Glucan
    6.2.2 Exo-?-1,3-glucanase
    6.2.3 Endo-?-1,3-glucanase
    6.2.4 Classification of endo-?-1,3-glucanases
    6.3 Sources of endo-?-1,3-glucanase
    6.4 Endo-?-1,3-glucanases of different families, their structure, and mechanism
    6.4.1 The family GH5
    6.4.2 The family GH16
    6.4.3 The family GH17
    6.4.4 The family GH55
    6.4.5 The family GH64
    6.4.6 The family GH81
    6.4.7 The family GH128, GH152, GH157, GH158
    6.5 Applications of endo-?-1,3-glucanases
    6.6 Conclusion
    References
    Further reading

    CHAPTER 7 Diversity of microbial endo-?-1,4-xylanases
    Peter Biely, Katari´na S?uchova´, and Vladimi´r Puchart

    7.1 Introduction
    7.2 Chemical structure of plant xylans
    7.3 Enzymes of xylan hydrolysis
    7.4 Endoxylanases-Xylan depolymerizing enzymes
    7.4.1 Molecular architecture of xylanases
    7.4.2 Classification into glycoside hydrolase families
    7.4.3 Mode of action and structure-function relationship
    7.5 Synergism of endoxylanases with debranching xylanolytic enzymes
    7.6 Application of xylanases
    7.7 Conclusions and future prospects
    References

    CHAPTER 8 ?-D-Xylosidases: Structure-based substrate specificities and their applications
    Satoshi Kaneko and Zui Fujimoto

    8.1 Introduction
    8.2 Structures of ?-xylosidases
    8.2.1 GH3
    8.2.2 GH39
    8.2.3 GH43
    8.2.4 GH52
    8.2.5 GH120
    8.2.6 Other families
    8.3 Substrate specificities of the ?-xylosidases
    8.3.1 GH1
    8.3.2 GH2
    8.3.3 GH3
    8.3.4 GH5
    8.3.5 GH10
    8.3.6 GH11
    8.3.7 GH30
    8.3.8 GH39
    8.3.9 GH43
    8.3.10 GH51
    8.3.11 GH52
    8.3.12 GH54
    8.3.13 GH116
    8.3.14 GH120
    8.4 Applications of ?-xylosidases
    References

    CHAPTER 9 Arabinofuranosidases
    Priyanka Pisalwar, Austin Fernandes, Devashish Tribhuvan, Saurav Gite, and Shadab Ahmed

    9.1 Introduction
    9.2 Classification
    9.2.1 Classification on the basis of substrate specificity and mechanism of action
    9.2.2 Classification on the basis of amino acid sequencing and structural similarity
    9.3 Structural and functional characteristics of arabinofuranosidases
    9.3.1 Effect of metal ions
    9.3.2 Carbohydrate-binding modules (CBM) associated with arabinofuranosidases
    9.4 Substrate specificity and biochemical properties of arabinofuranosidases
    9.4.1 Substrate specificity
    9.4.2 Physical and chemical properties
    9.5 Industrial applications of arabinofuranosidase
    9.5.1 Biofuel and biochemical industry
    9.5.2 Food and animal feed industry
    9.5.3 Beverage industry
    9.5.4 Paper and pulp industry
    9.5.5 Probiotic and pharmaceutical industry
    9.6 Future trends and scope of arabinofuranosidases
    9.6.1 Protein engineering
    9.6.2 Development of new modular enzymes with enhanced substrate degradation potential
    9.7 Conclusions
    References

    CHAPTER 10 Glycoside hydrolase family 16-Xyloglucan:xyloglucosyl transferases and their roles in plant cell wall structure and mechanics
    Barbora Stratilova´, Stanislav Kozmon, Eva Stratilova´, and Maria Hrmova

    10.1 Plant cell walls are protective multicomposite hydrogels
    10.1.1 Plant cell wall composition and function
    10.1.2 Plant cell wall structure and organization
    10.2 Plant xyloglucan:xyloglucosyl transferases
    10.2.1 Nomenclature and classification
    10.2.2 Catalytic mechanism
    10.2.3 Structural properties
    10.2.4 Enzyme activity methods
    10.2.5 Reactions with xyloglucan-derived and other substrates
    10.2.6 Genetics approaches to the XTH gene function
    10.3 The function of XTH enzymes in plant cell walls
    10.3.1 Plant cell wall dynamics
    10.3.2 Roles of XTH enzymes in cell wall restructuring
    10.4 Conclusions and future directions
    Author contributions
    Funding
    Conflict of interest
    References

    CHAPTER 11 Endo-arabinase: Source and application
    Dixita Chettri and Anil Kumar Verma

    11.1 Introduction
    11.2 Hemicellulose structure and hydrolysis of arabinans
    11.3 Source and biochemical characteristics
    11.4 Structure and mechanism of action
    11.5 Application of arabinase
    11.6 Safety assessment
    11.7 Conclusion and future prospects
    Acknowledgment
    Conflict of interest
    References

    CHAPTER 12 Overview of structure-function relationships of glucuronidases
    Samar Ballabha Mohapatra and Narayanan Manoj

    12.1 Introduction
    12.2 Xylanolytic ?-glucuronidases
    12.2.1 GH67 ?-glucuronidases
    12.2.2 GH115 ?-glucuronidases
    12.3 Non-xylanolytic GH4 ?-glucuronidase
    12.3.1 Active site architecture and the substrate specificity of GH4 TmAgu4B
    12.3.2 Mechanism of hydrolysis by GH4 AguA
    12.4 ?-Glucuronidases
    12.4.1 GH1 ?-glucuronidase
    12.4.2 GH2 ?-glucuronidases
    12.4.3 GH30 ?-glucuronidase
    12.4.4 GH79 ?-glucuronidases
    12.4.5 GH154 ?-glucuronidase
    12.4.6 GH169 ?-glucuronidase
    12.5 Perspectives on the development of applications of glucuronidases
    12.5.1 Xylanolytic ?-glucuronidases
    12.5.2 Inhibitors of ?-glucuronidases
    Credit
    References

    CHAPTER 13 Mannanases and other mannan-degrading enzymes
    Caio Cesar de Mello Capetti, Andrei Nicoli Gebieluca Dabul, Vanessa de Oliveira Arnoldi Pellegrini, and Igor Polikarpov

    13.1 Mannan structure
    13.2 Enzymes involved in the mannan degradation
    13.2.1 ?-mannanases
    13.2.2 Other enzymes important for mannan degradation
    13.3 Production of ?-mannanases
    13.4 Industrial applications of ?-mannanases
    13.4.1 Oil drilling
    13.4.2 Biofuel production
    13.4.3 Production of manno-oligosaccharides
    13.4.4 Paper and pulp production
    13.4.5 Textile industry
    13.4.6 Detergents
    13.4.7 Pharmaceutical and food industry
    13.5 Concluding remarks
    References

    CHAPTER 14 Structure, function, and protein engineering of GH53 ?-1,4-galactanases
    Sebastian J. Muderspach, Kenneth Jensen, Kristian B.R.M. Krogh, and Leila Lo Leggio

    14.1 Introduction, classification, and structure overview of ?-1,4-galactanases
    14.2 Biological functions and diversity
    14.2.1 Galactans in the plant cell walls
    14.2.2 Degradation of plant cell wall galactans in plant pathogens via GH53 enzymes
    14.2.3 Characterized GH53 galactanases from human gut microbiome
    14.2.4 Plant cell wall remodeling for mobilization of energy resources or fruit ripening
    14.2.5 GH53 galactanases from extremophiles
    14.3 Related enzyme activities
    14.3.1 Other microbial endo-galactanases
    14.3.2 ?-galactosidases and exo-?-1,4-galactanases
    14.3.3 ?-L-arabinofuranosidase and endo-1,5-?-L-arabinanase
    14.4 GH53-associated modules and domains
    14.4.1 Association of GH53 with carbohydrate-binding modules
    14.4.2 Association of GH53 with other domains
    14.5 Biotechnological applications
    14.5.1 GH53 galactanases in enzymatic degradation of biomass
    14.5.2 Prebiotic galactooligosaccharide production
    14.5.3 Other industrial uses
    14.6 Structure-function studies
    14.6.1 Conformation of substrate in a computationally derived BlGal-galactononaose complex
    14.6.2 Substrate-binding sites in GH53 galactanase crystal structures and their implication on product profile
    14.6.3 Structural features inducing thermostability in GH53 galactanases
    14.6.4 Prediction of structural features from sequence alignments and AlphaFold models
    14.7 Protein engineering
    14.7.1 Modulating thermostability and pH optimum
    14.7.2 Changing the product profile
    14.8 Conclusions and future directions
    References

    CHAPTER 15 Structural and functional insights and applications of ? galactosidase
    Azra Shafi and Qayyum Husain

    15.1 ? Galactosidase
    15.2 Glycoside hydrolase families
    15.3 Sources of ?-galactosidases
    15.3.1 Bacterial ?-Gals
    15.3.2 ?-Gals from filamentous fungi
    15.3.3 ?-Gals from yeasts
    15.3.4 ?-Gals from plants
    15.3.5 ?-Gals from animals
    15.3.6 Recombinant ?-Gals
    15.4 Lactose intolerance
    15.5 Structural characterization of ?-Gal
    15.5.1 The active site
    15.5.2 Metal binding sites
    15.6 Functional characterization of ?-Gal
    15.6.1 Mode of action and reaction mechanism
    15.6.2 Hydrolysis and transgalactosylation activities of ?-Gal
    15.7 Applications of ?-Gal
    15.7.1 Lactose-hydrolyzed milks
    15.7.2 ?-Gal supplements
    15.7.3 Treatment of industry effluents
    15.7.4 Synthesis of GOS
    15.7.5 Reactors and biosensors
    15.8 Conclusion
    References

    CHAPTER 16 ?-L-Rhamnosidases: Structures, substrate specificities, and their applications
    Satoshi Kaneko and Zui Fujimoto

    16.1 Introduction
    16.2 Structure of ?-L-rhamnosidases
    16.2.1 GH78
    16.2.2 GH106
    16.3 Substrate specificities of ?-L-rhamnosidases
    16.3.1 GH78
    16.3.2 GH106
    16.3.3 Unknown family
    16.4 Applications of ?-L-rhamnosidases
    References

    CHAPTER 17 Diversity and biotechnological applications of microbial glucoamylases
    Sanjeev Kumar, Priyakshi Nath, Arindam Bhattacharyya, Suman Mazumdar, Rudrarup Bhattacharjee, and T. Satyanarayana

    17.1 Introduction
    17.2 Production of glucoamylase: Microbes, substrate, nutrients, and fermentation system
    17.3 Thermophilic and mesophilic fungal glucoamylases
    17.4 Production of native glucoamylases
    17.5 Recombinant glucoamylases
    17.6 Multiple molecular forms of glucoamylases
    17.7 Structural characteristics of glucoamylases
    17.8 Biotechnological applications of glucoamylase
    17.9 Role of glucoamylase in starch conversion to sugar syrup
    17.10 Role of glucoamylase in HFCS
    17.11 Role of glucoamylase in the brewing and baking industry
    17.12 Conclusion
    References

    Index

    Több
    Mostanában megtekintett
    previous
    Glycoside Hydrolases: Biochemistry, Biophysics, and Biotechnology

    Glycoside Hydrolases: Biochemistry, Biophysics, and Biotechnology

    Goyal, Arun; Sharma, Kedar; (ed.)

    65 751 Ft

    next