• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • Fundamentals of Uncertainty Quantification for  Engineers: Methods and Models

    Fundamentals of Uncertainty Quantification for Engineers by Wang, Yan; Tran, Anh.V.; Mcdowell, David L.;

    Methods and Models

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 195.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        82 719 Ft (78 780 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 16 544 Ft off)
      • Discounted price 66 175 Ft (63 024 Ft + 5% áfa)

    82 719 Ft

    db

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Fundamentals of Uncertainty Quantification for Engineers: Methods and Models provides a comprehensive introduction to uncertainty quantification (UQ) accompanied by a wide variety of applied examples and implementation details to reinforce the concepts outlined in the book. Sections start with an introduction to the history of probability theory and an overview of recent developments of UQ methods in the domains of applied mathematics and data science. Major concepts of copula, Monte Carlo sampling, Markov chain Monte Carlo, polynomial regression, Gaussian process regression, polynomial chaos expansion, stochastic collocation, Bayesian inference, modelform uncertainty, multi-fidelity modeling, model validation, local and global sensitivity analyses, linear and nonlinear dimensionality reduction are included. Advanced UQ methods are also introduced, including stochastic processes, stochastic differential equations, random fields, fractional stochastic differential equations, hidden Markov model, linear Gaussian state space model, as well as non-probabilistic methods such as robust Bayesian analysis, Dempster-Shafer theory, imprecise probability, and interval probability. The book also includes example applications in multiscale modeling, reliability, fatigue, materials design, machine learning, and decision making.




    . Introduces all major topics of uncertainty quantification with engineering examples and implementation details
    . Features examples from a wide variety of science and engineering disciplines (e.g., fluids, structural dynamics, materials, manufacturing, multiscale simulation)
    . Discusses sampling methods, surrogate modeling, stochastic expansion, sensitivity analysis, dimensionality reduction and more

    Több

    Tartalomjegyzék:

    Biography
    Preface
    PART 1 Fundamentals of uncertainty quantification

    1. Uncertainty quantification for engineering decision making
    2. Probability and statistics in uncertainty quantification
    3. Sampling methods in uncertainty quantification 85
    4. Surrogate modeling in uncertainty quantification
    5. Stochastic expansion methods in uncertainty quantification
    6. Bayesian inference in uncertainty quantification
    7. Sensitivity analysis in uncertainty quantification
    8. Linear and nonlinear dimensionality reduction techniques in uncertainty quantification
    9. Applications of uncertainty quantification in engineering

    PART 2 Advanced topics of uncertainty quantification
    10. Stochastic processes in uncertainty quantification
    11. Markov models in uncertainty quantification
    12. Nonprobabilistic methods in uncertainty quantification
    Index

    Több