• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Fundamentals of Uncertainty Quantification for  Engineers: Methods and Models

    Fundamentals of Uncertainty Quantification for Engineers by Wang, Yan; Tran, Anh.V.; Mcdowell, David L.;

    Methods and Models

      • 10% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 195.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        82 719 Ft (78 780 Ft + 5% áfa)
      • Kedvezmény(ek) 10% (cc. 8 272 Ft off)
      • Discounted price 74 447 Ft (70 902 Ft + 5% áfa)

    Beszerezhetőség

    Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Fundamentals of Uncertainty Quantification for Engineers: Methods and Models provides a comprehensive introduction to uncertainty quantification (UQ) accompanied by a wide variety of applied examples, implementation details, and practical exercises to reinforce the concepts outlined in the book. Sections start with a review of the history of probability theory and recent developments of UQ methods in the domains of applied mathematics and data science. Major concepts of probability axioms, conditional probability, and Bayes’ rule are discussed and examples of probability distributions in parametric data analysis, reliability, risk analysis, and materials informatics are included.

    Random processes, sampling methods, and surrogate modeling techniques including multivariate polynomial regression, Gaussian process regression, multi-fidelity surrogate, support-vector machine, and decision tress are also covered. Methods for model selection, calibration, and validation are introduced next, followed by chapters on sensitivity analysis, stochastic expansion methods, Markov models, and non-probabilistic methods. The book concludes with a chapter describing the methods that can be used to predict UQ in systems, such as Monte Carlo, stochastic expansion, upscaling, Langevin dynamics, and inverse problems, with example applications in multiscale modeling, simulations, and materials design.




    • Introduces all major topics of uncertainty quantification with engineering examples, implementation details, and practical exercises provided in all chapters
    • Features examples from a wide variety of science and engineering disciplines (e.g. aerospace, mechanical, material, manufacturing, multiscale simulation)
    • Discusses materials informatics, sampling methods, surrogate modeling techniques, decision tress, multivariate polynomial regression, and more

    Több

    Tartalomjegyzék:

    1. Introduction to Uncertainty Quantification for Engineers
    2. Probability and Statistics in Uncertainty Quantification
    3. Random Processes in Uncertainty Quantification
    4. Sampling Methods in Uncertainty Quantification
    5. Surrogate Modeling in Uncertainty Quantification
    6. Model Selection, Calibration, and Validation in Uncertainty Quantification
    7. Sensitivity Analysis in Uncertainty Quantification
    8. Stochastic Expansion Methods in Uncertainty Quantification
    9. Markov Models
    10. Non-Probabilistic Methods in Uncertainty Quantification
    11. Uncertainty propagation in Uncertainty Quantification

    Több