
Frontiers of Statistics and Data Science
Sorozatcím: IISA Series on Statistics and Data Science;
-
20% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 160.49
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 20% (cc. 13 616 Ft off)
- Discounted price 54 463 Ft (51 870 Ft + 5% áfa)
68 079 Ft
Beszerezhetőség
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Springer
- Megjelenés dátuma 2025. június 16.
- Kötetek száma 1 pieces, Book
- ISBN 9789819607419
- Kötéstípus Keménykötés
- Terjedelem234 oldal
- Méret 235x155 mm
- Nyelv angol
- Illusztrációk 7 Illustrations, black & white; 16 Illustrations, color 700
Kategóriák
Rövid leírás:
This book addresses a diverse set of topics of contemporary interest in statistics and data science such as biostatistics and machine learning. Each chapter provides an overview of the topic under discussion, so that any reader with an understanding of graduate-level statistics, but not necessarily with a prior background on the topic should be able to get a summary of developments in the field. These chapters serve as basic introductory references for new researchers in these fields, as well as the basis of teaching a course on the topic, or with a part of the course on topics of precision medicine, deep learning, high-dimensional central limit theorems, multivariate rank testing, R programming for statistics, Bayesian nonparametrics, large deviation asymptotics, spatio-temporal modeling of Covid-19, statistical network models, hidden Markov models, statistical record linkage analysis. The edited volume will be most useful for graduate students looking for an overview of any of the covered topics for their research and for instructors for developing certain courses by including any of the topics as part of the course. Students enrolled in a course covering any of the included topics can also benefit from these chapters.
TöbbHosszú leírás:
This book addresses a diverse set of topics of contemporary interest in statistics and data science such as biostatistics and machine learning. Each chapter provides an overview of the topic under discussion, so that any reader with an understanding of graduate-level statistics, but not necessarily with a prior background on the topic should be able to get a summary of developments in the field. These chapters serve as basic introductory references for new researchers in these fields, as well as the basis of teaching a course on the topic, or with a part of the course on topics of precision medicine, deep learning, high-dimensional central limit theorems, multivariate rank testing, R programming for statistics, Bayesian nonparametrics, large deviation asymptotics, spatio-temporal modeling of Covid-19, statistical network models, hidden Markov models, statistical record linkage analysis. The edited volume will be most useful for graduate students looking for an overview of any of the covered topics for their research and for instructors for developing certain courses by including any of the topics as part of the course. Students enrolled in a course covering any of the included topics can also benefit from these chapters.
TöbbTartalomjegyzék:
Chapter 1: Artificial Intelligence in Precision Medicine and Digital Health.- Chapter 2: Revisiting Doob?s Theorem on Posterior Consistency.- Chapter 3: The Central Limit Theorem in High-dimension.- Chapter 4: An Introduction to Deep Learning.- Chapter 5: The R Language and its Use in Statistics.- Chapter 6: Large Deviation Asymptotics for Systems with Fractional Noise.- Chapter 7: High dimensional Wigner matrices with general independent entries.- Chapter 8: Data Analysis after Record Linkage: Sources of Error, Consequences, and Possible Solutions.- Chapter 9: Statistical Inference of Network Data: Past, Present, and Future.- Chapter 10: Current topics in group testing.
Több
Frontiers of Statistics and Data Science
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
68 079 Ft