• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Evolutionary Multi-objective Optimization in Uncertain Environments: Issues and Algorithms

    Evolutionary Multi-objective Optimization in Uncertain Environments by Goh, Chi-Keong; Tan, Kay Chen;

    Issues and Algorithms

    Sorozatcím: Studies in Computational Intelligence; 186;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 106.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        45 385 Ft (43 223 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 9 077 Ft off)
      • Discounted price 36 307 Ft (34 578 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Rövid leírás:

    Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined.



    The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.

    Több

    Hosszú leírás:

    Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined.



    The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.

    Több

    Tartalomjegyzék:

    I: Evolving Solution Sets in the Presence of Noise.- Noisy Evolutionary Multi-objective Optimization.- Handling Noise in Evolutionary Multi-objective Optimization.- Handling Noise in Evolutionary Neural Network Design.- II: Tracking Dynamic Multi-objective Landscapes.- Dynamic Evolutionary Multi-objective Optimization.- A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization.- III: Evolving Robust Solution Sets.- Robust Evolutionary Multi-objective Optimization.- Evolving Robust Solutions in Multi-Objective Optimization.- Evolving Robust Routes.- Final Thoughts.

    Több
    Mostanában megtekintett
    previous
    Evolutionary Multi-objective Optimization in Uncertain Environments: Issues and Algorithms

    Evolutionary Multi-objective Optimization in Uncertain Environments: Issues and Algorithms

    Goh, Chi-Keong; Tan, Kay Chen;

    45 385 Ft

    next