
Digital Signal Processing
Fundamentals, Applications, and Deep Learning
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 112.99
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 4 793 Ft off)
- Discounted price 43 136 Ft (41 082 Ft + 5% áfa)
47 930 Ft
Beszerezhetőség
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 4
- Kiadó Academic Press
- Megjelenés dátuma 2025. május 30.
- ISBN 9780443273353
- Kötéstípus Puhakötés
- Terjedelem1032 oldal
- Méret 235x191 mm
- Súly 2060 g
- Nyelv angol 700
Kategóriák
Hosszú leírás:
Digital Signal Processing: Fundamentals, Applications, and Deep Learning, Fourth Edition introduces students to the fundamental principles of digital signal processing (DSP) while also providing a working knowledge that they take with them into their engineering careers. Many instructive, worked examples are used to illustrate the material, and the use of mathematics is minimized for an easier grasp of concepts. As such, this title is also useful as a reference for non-engineering students and practicing engineers.
This book goes beyond DSP theory, showing the implementation of algorithms in hardware and software. Additional topics covered include DSP for artificial intelligence, adaptive filtering with noise reduction and echo cancellations, speech compression, signal sampling, digital filter realizations, filter design, multimedia applications, over-sampling, etc. More advanced topics are also covered, such as adaptive filters, speech compression such as pulse-code modulation, µ-law, adaptive differential pulse-code modulation, multi-rate DSP, oversampling analog-to-digital conversion, sub-band coding, wavelet transform, and neural networks.
- Covers DSP principles with various examples of real-world DSP applications on noise cancellation, communications, control applications, and artificial intelligence
- Includes application examples using DSP techniques for deep learning neural networks to solve real-world problems
- Provides a new chapter to cover principles of artificial neural networks and convolution neural networks with back-propagation algorithms
- Provides hands-on practice, with MATLAB code for worked examples and C programs for real-time DSP for students at https://www.elsevier.com/books-and-journals/book-companion/9780443273353
- Offers teaching support, including an image bank, full solutions manual, and MATLAB projects for qualified instructors, available for request at https://educate.elsevier.com/9780443273353
Tartalomjegyzék:
1. Introduction to Digital Signal Processing
2. Signal Sampling and Quantization
3. Digital Signals and Systems
4. Discrete Fourier Transform and Signal Spectra
5. The z-Transform
6. Digital Signal Processing Systems, Basic Filtering Types, and Digital Filter Realizations
7. Finite Impulse Response Filter Design
8. Infinite Impulse Response Filter Design
9. Adaptive Filters and Applications
10. Waveform Quantization and Compression
11. Multirate Digital Signal Processing, Oversampling of Analog-to-Digital Conversion, and Undersampling of Bandpass Signals
12. Subband and Wavelet-Based Coding
13. Image Processing Basics
14. Digital Signal Processing for Artificial Intelligence
15. Hardware and Software for Digital Signal Processors