• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Deep Learning-basierte Vorhersage der Sprachqualität

    Deep Learning-basierte Vorhersage der Sprachqualität by Mittag, Gabriel;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 109.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        46 657 Ft (44 435 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 3 733 Ft off)
      • Discounted price 42 924 Ft (40 880 Ft + 5% áfa)

    Beszerezhetőség

    Megjelenése törölve vagy kivonva a forgalomból. Sajnos nem rendelhető.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1. Aufl. 2024
    • Kiadó Springer Vieweg
    • Megjelenés dátuma 2025. február 14.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783031385865
    • Kötéstípus Keménykötés
    • Terjedelem174 oldal
    • Méret 235x155 mm
    • Nyelv német
    • Illusztrációk 5 Illustrations, black & white; 54 Illustrations, color
    • 0

    Kategóriák

    Rövid leírás:

    Dieses Buch zeigt, wie man die neuesten Methoden des maschinellen Lernens (Deep Learning) für die Vorhersage der Sprachqualität einsetzen kann. Der Autor zeigt, wie die jüngsten Fortschritte im Bereich des maschinellen Lernens für die Aufgabe der Sprachqualitätsvorhersage genutzt werden können und bietet eine eingehende Analyse der Eignung verschiedener Deep-Learning-Architekturen für diese Aufgabe. Der Autor zeigt dann, wie das resultierende Modell herkömmliche Sprachqualitätsmodelle übertrifft und zusätzliche Informationen über die Ursache einer Qualitätsbeeinträchtigung durch die Vorhersage der Sprachqualitätsdimensionen Rauschen, Färbung, Diskontinuität und Lautheit liefert.

    Die Übersetzung wurde mit Hilfe von künstlicher Intelligenz durchgeführt. Eine anschließende menschliche Überarbeitung erfolgte vor allem in Bezug auf den Inhalt.


    Több

    Hosszú leírás:

    Dieses Buch zeigt, wie man die neuesten Methoden des maschinellen Lernens (Deep Learning) für die Vorhersage der Sprachqualität einsetzen kann. Der Autor zeigt, wie die jüngsten Fortschritte im Bereich des maschinellen Lernens für die Aufgabe der Sprachqualitätsvorhersage genutzt werden können und bietet eine eingehende Analyse der Eignung verschiedener Deep-Learning-Architekturen für diese Aufgabe. Der Autor zeigt dann, wie das resultierende Modell herkömmliche Sprachqualitätsmodelle übertrifft und zusätzliche Informationen über die Ursache einer Qualitätsbeeinträchtigung durch die Vorhersage der Sprachqualitätsdimensionen Rauschen, Färbung, Diskontinuität und Lautheit liefert.

    Több

    Tartalomjegyzék:

    1.Einführung.- 2. Qualitätsbewertung der übertragenen Sprache - 3. Neuronale Netzwerkarchitekturen für die Vorhersage der Sprachqualität - 4. Doppelendige Sprachqualitätsvorhersage mit Siamesischen Netzen.- 5. Vorhersage von Sprachqualitätsdimensionen mit Multi-Task-Lernen - 6. Bias-Aware Loss für das Training aus mehreren Datensätzen.- 7. NISQA - Ein einseitiges Sprachqualitätsmodell.- 8. Schlussfolgerungen.- A. Datensatz-Zustandstabellen.- B. Dimensionshistogramme für Trainings- und Validierungsdatensätze.- Referenzen.

    Több