Computer Vision: Algorithms and Applications

Computer Vision

Algorithms and Applications
 
Kiadás sorszáma: 2nd ed. 2022
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 78.10
Becsült forint ár:
32 063 Ft (30 537 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

29 499 (28 094 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 2 565 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: Általában 3-5 hét.
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
 
 
 
A termék adatai:

ISBN13:9783030343712
ISBN10:3030343715
Kötéstípus:Keménykötés
Terjedelem:925 oldal
Méret:279x210 mm
Súly:2812 g
Nyelv:angol
Illusztrációk: 374 Illustrations, black & white; 144 Illustrations, color; 650 Tables, color
1115
Témakör:
Rövid leírás:

Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as well as for fun, consumer-level tasks that students can apply to their own personal photos and videos.

More than just a source of ?recipes,? this exceptionally authoritative and comprehensive textbook/reference takes a scientific approach to the formulation of computer vision problems. These problems are then analyzed using the latest classical and deep learning models and solved using rigorous engineering principles.

Topics and features:

  • Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses
  • Incorporates totally new material on deep learning and applications such as mobile computational photography, autonomous navigation, and augmented reality
  • Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects
  • Includes 1,500 new citations and 200 new figures that cover the tremendous developments from the last decade
  • Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, estimation theory, datasets, and software

Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

About the Author

?Dr. Richard Szeliski has more than 40 years? experience in computer vision research, most recently at Facebook and Microsoft Research, where he led the Computational Photography and Interactive Visual Media groups. He is currently an Affiliate Professor at the University of Washington where he co-developed (with Steve Seitz) the widely adopted computer vision curriculum on which this book is based.

Hosszú leírás:

Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as well as for fun, consumer-level tasks that students can apply to their own personal photos and videos.

More than just a source of ?recipes,? this exceptionally authoritative and comprehensive textbook/reference takes a scientific approach to the formulation of computer vision problems. These problems are then analyzed using the latest classical and deep learning models and solved using rigorous engineering principles.

Topics and features:

  • Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses
  • Incorporates totally new material on deep learning and applications such as mobile computational photography, autonomous navigation, and augmented reality
  • Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects
  • Includes 1,500 new citations and 200 new figures that cover the tremendous developments from the last decade
  • Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, estimation theory, datasets, and software

Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.



Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art?


Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos.


More than just a source of ?recipes,? this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques


Topics and features:



  • Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses

  • Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects

  • Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory

  • Suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book

  • Supplies supplementary course material for students at the associated website, http://szeliski.org/Book/


Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

Tartalomjegyzék: