• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Computational Advertising: Market and Technologies for Internet Commercial Monetization

    Computational Advertising by Liu, Peng; Wang, Chao;

    Market and Technologies for Internet Commercial Monetization

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 125.00
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        63 262 Ft (60 250 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 12 652 Ft off)
      • Discounted price 50 610 Ft (48 200 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2, New edition
    • Kiadó CRC Press
    • Megjelenés dátuma 2020. május 27.

    • ISBN 9780367206383
    • Kötéstípus Keménykötés
    • Terjedelem442 oldal
    • Méret 254x178 mm
    • Súly 303 g
    • Nyelv angol
    • Illusztrációk 131 Illustrations, black & white; 17 Tables, black & white
    • 107

    Kategóriák

    Valószínűségelmélet és matematikai statisztika Villamosmérnöki tudományok, híradástechnika, műszeripar A számítástudomány elmélete, a számítástechnika általában Számítógép architektúrák, logikai tervezés Operációs rendszerek és grafikus felhasználói felületek Szoftverfejlesztés Mesterséges intelligencia Adatvédelem, adatbiztonság A számítástechnika biztonsági és egészségügyi vonatkozásai Programnyelvek általában Környezetmérnöki tudományok Értékesítés, kereskedelem Közgazdaságtan Marketing, kommunikáció, PR Valószínűségelmélet és matematikai statisztika (karitatív célú kampány) Villamosmérnöki tudományok, híradástechnika, műszeripar (karitatív célú kampány) A számítástudomány elmélete, a számítástechnika általában (karitatív célú kampány) Számítógép architektúrák, logikai tervezés (karitatív célú kampány) Operációs rendszerek és grafikus felhasználói felületek (karitatív célú kampány) Szoftverfejlesztés (karitatív célú kampány) Mesterséges intelligencia (karitatív célú kampány) Adatvédelem, adatbiztonság (karitatív célú kampány) A számítástechnika biztonsági és egészségügyi vonatkozásai (karitatív célú kampány) Programnyelvek általában (karitatív célú kampány) Környezetmérnöki tudományok (karitatív célú kampány) Értékesítés, kereskedelem (karitatív célú kampány) Közgazdaságtan (karitatív célú kampány) Marketing, kommunikáció, PR (karitatív célú kampány)

    Rövid leírás:

    This book introduces computational advertising, and advertising monetization. It provides a macroscopic understanding of how consumer products in the Internet era push user experience and monetization to the limit.

    Több

    Hosszú leírás:

    This book introduces computational advertising, and Internet monetization. It provides a macroscopic understanding of how consumer products in the Internet era push user experience and monetization to the limit. Part One of the book focuses on the basic problems and background knowledge of online advertising. Part Two targets the product, operations, and sales staff, as well as high-level decision makers of the Internet products. It explains the market structure, trading models, and the main products in computational advertising. Part Three targets systems, algorithms, and architects, and focuses on the key technical challenges of different advertising products.


     


    Features


    ·         Introduces computational advertising and Internet monetization


    ·         Covers data processing, utilization, and trading


    ·         Uses business logic as the driving force to explain online advertising products and technology advancement


    ·         Explores the products and the technologies of computational advertising, to provide insights on the realization of personalization systems, constrained optimization, data monetization and trading, and other practical industry problems


    ·         Includes case studies and code snippets

    Több

    Tartalomjegyzék:

    Contents


    Figures, xxi


    Tables, xxvii


    Foreword, xxix


    Preface (1), xxxvii


    Preface (2), xxxix


    Preface (3), xli


    Authors, xliii


    PART 1 Market and Background of Online Advertising 1


    CHAPTER 1 ? Overview of Online Advertising 3


    1.1 FREE MODE AND CORE ASSETS OF THE INTERNET 4


    1.2 RELATIONSHIP BETWEEN BIG DATA AND ADVERTISING 5


    1.3 DEFINITION AND PURPOSE OF ADVERTISING 8


    1.4 PRESENTATION FORMS OF ONLINE ADVERTISING 10


    1.5 BRIEF HISTORY OF ONLINE ADVERTISING 18


    CHAPTER 2 ? Basis for Computational Advertising 25


    2.1 ADVERTISING EFFECTIVENESS THEORY 26


    2.2 TECHNICAL FEATURES OF THE INTERNET ADVERTISING 29


    2.3 CORE ISSUE OF COMPUTATIONAL ADVERTISING 30


    2.3.1 Breakdown of Advertising Return 32


    2.3.2 Relationship between Billing Models and eCPM Estimation 33


    2.4 BUSINESS ORGANIZATIONS IN THE ONLINE ADVERTISING


    INDUSTRY 36


    2.4.1 Interactive Advertising Bureau 37


    2.4.2 American Association of Advertising Agencies 38


    2.4.3 Association of National Advertisers 38


    PART 2 Product Logic of Online Advertising 39


    CHAPTER 3 ? Overview of Online Advertising Products 41


    3.1 DESIGN PHILOSOPHY FOR COMMERCIAL PRODUCTS 43


    3.2 PRODUCT INTERFACE OF ADVERTISING SYSTEM 44


    3.2.1 Demand-Side Management Interface 44


    3.2.2 Supply-Side Management Interface 47


    3.2.3 Multiple Forms of Interface between Supply and Demand Sides 48


    CHAPTER 4 ? Agreement-Based Advertising 51


    4.1 AD SPACE AGREEMENT 52


    4.2 AUDIENCE TARGETING 53


    4.2.1 Overview of Audience Targeting Technologies 54


    4.2.2 Audience Targeting Tag System 57


    4.2.3 Design Principles for Tag System 59


    4.3 DISPLAY QUANTITY AGREEMENT 60


    4.3.1 Traffic Forecasting 61


    4.3.2 Traffic Shaping 61


    4.3.3 Online Allocation 62


    4.3.4 Product Cases 63


    4.3.4.1 Yahoo! GD 63


    CHAPTER 5 ? Search Ad and Auction-Based Advertising 65


    5.1 SEARCH AD 67


    5.1.1 Products of Search Advertising 67


    5.1.2 New Forms of Search Ads 70


    5.1.3 Product Strategy of Search Advertising 73


    5.1.4 Product Cases 76


    5.2 POSITION AUCTION AND MECHANISM DESIGN 79


    5.2.1 Market Reserve Price 80


    5.2.2 Pricing Problem 81


    5.2.3 Squashing 83


    5.2.4 Myerson Optimal Auction 84


    5.2.5 Examples of Pricing Results 85


    5.3 AUCTION-BASED ADN 85


    5.3.1 Forms of ADN Products 86


    5.3.2 Product Strategy for ADN 88


    5.3.3 Product Cases 89


    5.4 DEMAND-SIDE PRODUCTS IN AUCTION-BASED ADVERTISING 90


    5.4.1 Search Engine Marketing 90


    5.4.2 Trading Desk 91


    5.4.3 Product Cases 91


    5.5 COMPARISON BETWEEN AUCTION-BASED AND


    AGREEMENT-BASED ADVERTISING 93


    CHAPTER 6 ? Programmatic Trade Advertising 95


    6.1 RTB 97


    6.1.1 RTB Process 98


    6.2 OTHER MODES OF PROGRAMMED TRADE 100


    6.2.1 Preferred Deal 100


    6.2.2 Private Marketplace 101


    6.2.3 Programmatic Direct Buy 102


    6.2.4 Spectrum of Advertising Transactions 103


    6.3 AD EXCHANGE 104


    6.3.1 Product Samples 104


    6.4 DEMAND-SIDE PLATFORM 105


    6.4.1 DSP Product Strategy 106


    6.4.2 Bidding Strategy 106


    6.4.3 Bidding and Pricing Processes 108


    6.4.4 Retargeting 108


    6.4.5 Look-Alike 111


    6.4.6 Product Cases 112


    6.5 SUPPLY-SIDE PLATFORM 113


    6.5.1 SSP Product Strategy 114


    6.5.2 Header Bidding 115


    6.5.3 Product Cases 117


    CHAPTER 7 ? Data Processing and Exchange 119


    7.1 VALUABLE DATA SOURCES 120


    7.2 DATA MANAGEMENT PLATFORM 123


    7.2.1 Tripartite Data Partitioning 123


    7.2.2 First-Party DMP 123


    7.2.3 Third-Party DMP 124


    7.2.4 Product Cases 125


    7.3 BASIC PROCESS OF DATA TRADING 129


    7.4 PRIVACY PROTECTION AND DATA SECURITY 131


    7.4.1 Privacy Protection 131


    7.4.2 Data Security in Programmatic Trade 134


    7.4.3 General Data Protection Regulations 136


    CHAPTER 8 ? News Feed Ad and Native Ad 139


    8.1 STATUS QUO AND CHALLENGES IN MOBILE ADVERTISING 140


    8.1.1 Characteristics of Mobile Advertising 141


    8.1.2 Traditional Creative of Mobile Advertising 142


    8.1.3 Challenges in Front of Mobile Advertising 144


    8.2 NEWS FEED AD 146


    8.2.1 Definition of News Feed Ad 146


    8.2.2 Key Points about News Feed Ad 149


    8.3 OTHER NATIVE AD-RELATED PRODUCTS 150


    8.3.1 Search Ad 150


    8.3.2 Advertorial 151


    8.3.3 Affiliate network 151


    8.4 NATIVE ADVERTISING PLATFORM 151


    8.4.1 Native Display and Native Scenario 152


    8.4.2 Scenario Perception and Application 153


    8.4.3 Product Placement Native Ad 154


    8.4.4 Product Cases 157


    8.5 NATIVE AD AND PROGRAMMATIC TRADE 161


    PART 3 Key Technologies for Computational Advertising 163


    CHAPTER 9 ? Technological Overview 165


    9.1 PERSONALIZED SYSTEM FRAMEWORK 166


    9.2 OPTIMIZATION GOALS OF VARIOUS ADVERTISING SYSTEMS 167


    9.3 COMPUTATIONAL ADVERTISING SYSTEM ARCHITECTURE 169


    9.3.1 Ad Serving Engine 169


    9.3.2 Data Highway 172


    9.3.3 Offline Data Processing 172


    9.3.4 Online Data Processing 173


    9.4 MAIN TECHNOLOGIES FOR COMPUTATIONAL


    ADVERTISING SYSTEM 174


    9.5 BUILD A COMPUTATIONAL ADVERTISING SYSTEM WITH


    OPEN SOURCE TOOLS 175


    9.5.1 Web Server Nginx 176


    9.5.2 ZooKeeper: Distributed Configuration and Cluster


    Management Tool 178


    9.5.3 Lucene: Full-Text Retrieval Engine 179


    9.5.4 Thrift: Cross-Language Communication Interface 179


    9.5.5 Data Highway 180


    9.5.6 Hadoop: Distributed Data-Processing Platform 181


    9.5.7 Redis: Online Cache of Features 182


    9.5.8 Strom: Stream Computing Platform Storm 182


    9.5.9 Spark: Efficient Iterative Computing Framework 183


    CHAPTER 10 ? Fundamental Knowledge 185


    10.1 INFORMATION RETRIEVAL 186


    10.1.1 Inverted Index 186


    10.1.2 Vector Space Model 189


    10.2 OPTIMIZATION 190


    10.2.1 Lagrange Multiplier and Convex Optimization 191


    10.2.2 Downhill Simplex Method 192


    10.2.3 Gradient Descent 193


    10.2.4 Quasi-Newton Methods 195


    10.2.5 Trust Region Method 199


    10.3 STATISTICAL MACHINE LEARNING 201


    10.3.1 Maximum Entropy and Exponential Family Distribution 202


    10.3.2 Mixture Model and EM Algorithm 204


    10.3.3 Bayesian Learning 206


    10.4 DISTRIBUTED OPTIMIZATION FRAMEWORK FOR


    STATISTICAL MODEL 210


    10.5 DEEP LEARNING 211


    10.5.1 DNN Optimization Methods 212


    10.5.2 Convolutional Neural Network 214


    10.5.3 Recursive Neural Network 215


    10.5.4 Generative Adversarial Nets 217


    CHAPTER 11 ? Agreement-Based Advertising Technologies 219


    11.1 ADVERTISING SCHEDULING SYSTEM 220


    11.1.1 Scheduling and Mixed Ad Serving 220


    11.2 GD SYSTEM 221


    11.2.1 Traffic Forecasting 222


    11.2.2 Frequency Capping 224


    11.3 ONLINE ALLOCATION 227


    11.3.1 Online Allocation Problem 228


    11.3.2 Examples of Online Allocation Problems 230


    11.3.3 Limit Performance Analysis 232


    11.3.4 Practical Optimization Algorithms 233


    11.4 HEURISTIC ALLOCATION PLAN HWM 240


    CHAPTER 12 ? Audience-Targeting Technologies 245


    12.1 CLASSIFICATION OF AUDIENCE TARGETING TECHNOLOGIES 246


    12.2 CONTEXTUAL TARGETING 248


    12.2.1 Near-Line Crawling System 249


    12.3 TEXT TOPIC MINING 250


    12.3.1 LSA Model 250


    12.3.2 PLSI Model 251


    12.3.3 LDA Model 252


    12.3.4 Word Embedding (Word2vec) 253


    12.4 BEHAVIORAL TARGETING 255


    12.4.1 Modeling Problem for Behavioral Targeting 255


    12.4.2 Feature Generation for Behavioral Targeting 257


    12.4.2.1 Tagging Methods for Various Behaviors 260


    12.4.3 Decision-making Process for Behavioral Targeting 261


    12.4.4 Evaluation of Behavioral Targeting 262


    12.5 PREDICTION OF DEMOGRAPHICAL ATTRIBUTES 264


    12.6 DATA MANAGEMENT PLATFORM 266


    CHAPTER 13 ? Auction-Based Advertising Technologies 267


    13.1 PRICING ALGORITHMS IN AUCTION-BASED ADVERTISING 268


    13.2 SEARCH AD SYSTEM 270


    13.2.1 Query Expansion 272


    13.2.2 Ad Placement 274


    13.3 ADN 275


    13.3.1 Short-Term Behavior Feedback and Stream Computing 275


    13.4 AD RETRIEVAL 278


    13.4.1 Boolean Expression 279


    13.4.2 Relevance Retrieval 283


    13.4.3 DNN-Based Semantic Modeling 288


    13.4.4 ANN Semantic Retrieval 292


    CHAPTER 14 ? CTR Prediction Model 301


    14.1 CTR PREDICTION 302


    14.1.1 CTR Basic Model 302


    14.1.2 LR Model-Based Optimization Algorithm 303


    14.1.3 Correction of CTR Model 312


    14.1.4 Features of CTR Model 313


    14.1.5 Evaluation of CTR Model 319


    14.1.6 Intelligent Frequency Capping 321


    14.2 OTHER CTR MODELS 322


    14.2.1 Factorization Machines 322


    14.2.2 GBDT 323


    14.2.3 Deep Learning-Based CTR Model 324


    14.3 EXPLORATION AND UTILIZATION 326


    14.3.1 Reinforcement Learning and E&E 327


    14.3.2 UCB 329


    14.3.3 Contextual Bandit 329


    CHAPTER 15 ? Programmatic Trade Technologies 331


    15.1 ADX 332


    15.1.1 Cookie Mapping 334


    15.1.2 Call-out Optimization 336


    15.2 DSP 338


    15.2.1 Customized User Segmentation 340


    15.2.1.1 Look-Alike Modeling 341


    15.2.2 CTR Prediction in DSP 342


    15.2.3 Estimation of Click Value 343


    15.2.4 Bidding Strategy 344


    15.3 SSP 345


    15.3.1 Network Optimization 346


    CHAPTER 16 ? Other Advertising Technologies 347


    16.1 CREATIVE OPTIMIZATION 348


    16.1.1 Programmatic Creative 349


    16.1.2 Click Heat Map 350


    16.1.3 Trend of Creative 351


    16.2 EXPERIMENTAL FRAMEWORK 353


    16.3 ADVERTISING MONITORING AND ATTRIBUTION 354


    16.3.1 Ad Monitoring 355


    16.3.2 Ad Safety 356


    16.3.3 Attribution of Advertising Performance 357


    16.4 SPAM AND ANTI-SPAM 359


    16.4.1 Classification of Spam Methods 359


    16.4.2 Common Ad Spam Methods 360


    16.5 PRODUCT AND TECHNOLOGY SELECTION 366


    16.5.1 Best Practices for Media 367


    16.5.2 Best Practices for Advertisers 370


    16.5.3 Best Practices for Data Providers 372


    PART 4 Terminology and Index 375


    REFERENCES, 381


    INDEX, 387

    Több
    Mostanában megtekintett
    previous
    Computational Advertising: Market and Technologies for Internet Commercial Monetization

    Computational Advertising: Market and Technologies for Internet Commercial Monetization

    Liu, Peng; Wang, Chao;

    63 262 Ft

    next