• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Complex Analysis
      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 37.44
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        15 882 Ft (15 125 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 3 176 Ft off)
      • Discounted price 12 705 Ft (12 100 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2003
    • Kiadó Springer
    • Megjelenés dátuma 2003. május 28.
    • Kötetek száma 1 pieces, Book

    • ISBN 9781852337339
    • Kötéstípus Puhakötés
    • Terjedelem260 oldal
    • Méret 254x178 mm
    • Súly 1070 g
    • Nyelv angol
    • Illusztrációk XI, 260 p. Illustrations, black & white
    • 0

    Kategóriák

    Rövid leírás:

    Complex analysis can be a difficult subject and many introductory texts are just too ambitious for today?s students. This book takes a lower starting point than is traditional and concentrates on explaining the key ideas through worked examples and informal explanations, rather than through "dry" theory.

    Több

    Hosszú leírás:

    Complex analysis is one of the most attractive of all the core topics in an undergraduate mathematics course. Its importance to applications means that it can be studied both from a very pure perspective and a very applied perspective. This book takes account of these varying needs and backgrounds and provides a self-study text for students in mathematics, science and engineering. Beginning with a summary of what the student needs to know at the outset, it covers all the topics likely to feature in a first course in the subject, including: complex numbers, differentiation, integration, Cauchy's theorem, and its consequences, Laurent series and the residue theorem, applications of contour integration, conformal mappings, and harmonic functions. A brief final chapter explains the Riemann hypothesis, the most celebrated of all the unsolved problems in mathematics, and ends with a short descriptive account of iteration, Julia sets and the Mandelbrot set. Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided.

    From the reviews:


    Howie's book is a gem. I want to use it the next time I teach complex analysis. Not only do Howie's selection of topics and their sequence correspond perfectly to what I believe to be the ideal approach to this gorgeous subject, the writing style is (again) wonderful...I think this is a terrific book. I'm going to use it the first chance I get. And I recommend it very, very highly.


    MAA Online


    Howie has written an outstanding book on complex variables...The readability of the book is improved by more than 80 figures and numerous examples. Also included are 140 exercises with complete solutions in an appendix. All this makes the book ideal for self-study. Summing up: Highly recommended.


    CHOICE


    "This book provides a self-study text for students in mathematics, science and engineering. It covers all the topics likely to feature in a first course in complex analysis up to Laurent series, the residue theorem and conformal mappings. ? Many carefully worked examples and more than 100 exercises with solutions make the book a valuable contribution to the extensive literature on complex analysis." (F.Haslinger, Monatshefte für Mathematik, Vol. 143 (2), 2004)


    "This is a superbly well-written, balanced introduction to complex analysis that will meet the needs of a wide range of undergraduates. ? Here, page after page, I found myself nodding in agreement with the choices that the author has made ... . ?Of all the many introductions to complex analysis, Howie?s is arguably the most attractive?." (Nick Lord, The Mathematical Gazette, Vol. 88 (512), 2004)


    "This book takes account of the varying needs and backgrounds and provides a self-study text for students in mathematics, science and engineering. ... Clear and careful explanations are backed up with worked examples and more than 100 exercises, for which full solutions are provided." (L'ENSEIGNEMENT MATHEMATIQUE, Vol. 49 (3-4),2003)


    "Howie ? has written an outstanding book on complex variables. ? The readability of the book is improved by more than 80 figures and numerous examples. Also included are 140 exercises with complete solutions in an appendix. All this make the book ideal for self-study. Summing Up: Highly recommended." (D.P.Turner, CHOICE, December, 2003)



    Springer Book Archives

    Több

    Tartalomjegyzék:

    1. What Do I Need to Know?.- 1.1 Set Theory.- 1.2 Numbers.- 1.3 Sequences and Series.- 1.4 Functions and Continuity.- 1.5 Differentiation.- 1.6 Integration.- 1.7 Infinite Integrals.- 1.8 Calculus of Two Variables.- 2. Complex Numbers.- 2.1 Are Complex Numbers Necessary?.- 2.2 Basic Properties of Complex Numbers.- 3. Prelude to Complex Analysis.- 3.1 Why is Complex Analysis Possible?.- 3.2 Some Useful Terminology.- 3.3 Functions and Continuity.- 3.4 The O and o Notations.- 4. Differentiation.- 4.1 Differentiability.- 4.2 Power Series.- 4.3 Logarithms.- 4.4 Cuts and Branch Points.- 4.5 Singularities.- 5. Complex Integration.- 5.1 The Heine-Borel Theorem.- 5.2 Parametric Representation.- 5.3 Integration.- 5.4 Estimation.- 5.5 Uniform Convergence.- 6. Cauchy?s Theorem.- 6.1 Cauchy?s Theorem: A First Approach.- 6.2 Cauchy?s Theorem: A More General Version.- 6.3 Deformation.- 7. Some Consequences of Cauchy?s Theorem.- 7.1 Cauchy?s Integral Formula.- 7.2 The Fundamental Theorem of Algebra.- 7.3 Logarithms.- 7.4 Taylor Series.- 8. Laurent Series and the Residue Theorem.- 8.1 Laurent Series.- 8.2 Classification of Singularities.- 8.3 The Residue Theorem.- 9. Applications of Contour Integration.- 9.1 Real Integrals: Semicircular Contours.- 9.2 Integrals Involving Circular Functions.- 9.3 Real Integrals: Jordan?s Lemma.- 9.4 Real Integrals: Some Special Contours.- 9.5 Infinite Series.- 10. Further Topics.- 10.1 Integration of f?/f; Rouché?s Theorem.- 10.2 The Open Mapping Theorem.- 10.3 Winding Numbers.- 11. Conformai Mappings.- 11.1 Preservation of Angles.- 11.2 Harmonic Functions.- 11.3 Möbius Transformations.- 11.4 Other Transformations.- 12. Final Remarks.- 12.1 Riemann?s Zeta function.- 12.2 Complex Iteration.- 13. Solutions to Exercises.- SubjectIndexBibliography.- Subject IndexIndex.

    Több
    Mostanában megtekintett
    previous
    Complex Analysis

    Complex Analysis

    Howie, John M.;

    15 882 Ft

    next