
Classification and Data Science in the Digital Age
Sorozatcím: Studies in Classification, Data Analysis, and Knowledge Organization;
-
8% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 42.79
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 8% (cc. 1 452 Ft off)
- Discounted price 16 699 Ft (15 904 Ft + 5% áfa)
18 151 Ft
Beszerezhetőség
Bizonytalan a beszerezhetőség. Érdemes még egyszer keresni szerzővel és címmel. Ha nem talál másik, kapható kiadást, forduljon ügyfélszolgálatunkhoz!
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 1st ed. 2023
- Kiadó Springer
- Megjelenés dátuma 2023. december 8.
- Kötetek száma 1 pieces, Book
- ISBN 9783031090332
- Kötéstípus Puhakötés
- Terjedelem416 oldal
- Méret 235x155 mm
- Súly 658 g
- Nyelv angol
- Illusztrációk 25 Illustrations, black & white; 68 Illustrations, color 0
Kategóriák
Rövid leírás:
The contributions gathered in this open access book focus on modern methods for data science and classification and present a series of real-world applications. Numerous research topics are covered, ranging from statistical inference and modeling to clustering and dimension reduction, from functional data analysis to time series analysis, and network analysis. The applications reflect new analyses in a variety of fields, including medicine, marketing, genetics, engineering, and education.
The book comprises selected and peer-reviewed papers presented at the 17th Conference of the International Federation of Classification Societies (IFCS 2022), held in Porto, Portugal, July 19?23, 2022. The IFCS federates the classification societies and the IFCS biennial conference brings together researchers and stakeholders in the areas of Data Science, Classification, and Machine Learning. It provides a forum for presenting high-quality theoretical and applied works, and promoting and fostering interdisciplinary research and international cooperation. The intended audience is researchers and practitioners who seek the latest developments and applications in the field of data science and classification.
Hosszú leírás:
The contributions gathered in this open access book focus on modern methods for data science and classification and present a series of real-world applications. Numerous research topics are covered, ranging from statistical inference and modeling to clustering and dimension reduction, from functional data analysis to time series analysis, and network analysis. The applications reflect new analyses in a variety of fields, including medicine, marketing, genetics, engineering, and education.
The book comprises selected and peer-reviewed papers presented at the 17th Conference of the International Federation of Classification Societies (IFCS 2022), held in Porto, Portugal, July 19?23, 2022. The IFCS federates the classification societies and the IFCS biennial conference brings together researchers and stakeholders in the areas of Data Science, Classification, and Machine Learning. It provides a forum for presenting high-quality theoretical and applied works, and promoting and fostering interdisciplinary research and international cooperation. The intended audience is researchers and practitioners who seek the latest developments and applications in the field of data science and classification.
Tartalomjegyzék:
Preface.- R. Abdesselam: A Topological Clustering of Individuals.- C. Anton and I. Smith: Model Based Clustering of Functional Data with Mild Outliers.- F. Antonazzo and S. Ingrassia: A Trivariate Geometric Classification of Decision Boundaries for Mixtures of Regressions.- E. Arnone, E. Cunial, and L. M. Sangalli: Generalized Spatio-temporal Regression with PDE Penalization.- R. Ascari and S. Migliorati: A New Regression Model for the Analysis of Microbiome Data.- R. Aschenbruck, G. Szepannek, and A. F. X. Wilhelm: Stability of Mixed-type Cluster Partitions for Determination of the Number of Clusters.- A. Ashofteh and P. Campos: A Review on Official Survey Item Classification for Mixed-Mode Effects Adjustment.- V. Batagelj: Clustering and Blockmodeling Temporal Networks ? Two Indirect Approaches.- R. Boutalbi, L. Labiod, and M. Nadif: Latent Block Regression Model.- N. Chabane, M. Achraf Bouaoune, R. Amir Sofiane Tighilt, B. Mazoure, N. Tahiri, and V. Makarenkov: Using Clustering and Machine Learning Methods to Provide Intelligent Grocery Shopping Recommendations.- T. Chadjipadelis and S. Magopoulou: COVID-19 Pandemic: a Methodological Model for the Analysis of Government?s Preventing Measures and Health Data Records.- J. Champagne Gareau, É. Beaudry, and V. Makarenkov: pcTVI: Parallel MDP Solver Using a Decomposition into Independent Chains.- C. Di Nuzzo and S. Ingrassia: Three-way Spectral Clustering.- J. Dobša and H. A. L. Kiers: Improving Classification of Documents by Semi-supervised Clustering in a Semantic Space.- J. Gama: Trends in Data Stream Mining.- L. A. García-Escudero, A. Mayo-Iscar, G. Morelli, and M. Riani: Old and New Constraints in Model Based Clustering.- V. G Genova, G. Giordano, G . Ragozini, and M. Prosperina Vitale: Clustering Student Mobility Data in 3-way Networks.- R. Giubilei: Clustering Brain Connectomes Through a Density-peak Approach.- T. Górecki, M. Šuczak, and P. Piasecki: Similarity Forest for Time Series Classification.- K. Hayashi, E. Hoshino, M. Suzuki, E. Nakanishi, K. Sakai, and M. Obatake: Detection of the Biliary Atresia Using Deep Convolutional Neural Networks Based on Statistical Learning Weights via Optimal Similarity and Resampling Methods.- Ch. Hennig: Some Issues in Robust Clustering.- J. Kalina and P. Janá?ek: Robustness Aspects of Optimized Centroids.- L. Labiod and M. Nadif: Data Clustering and Representation Learning Based on Networked Data.- Lazhar Labiod and Mohamed Nadif: Towards a Bi-stochastic Matrix Approximation of k-means and Some Variants.- A. LaLonde, T. Love, D. R. Young, and T. Wu: Clustering Adolescent Female Physical Activity Levels with an Infinite Mixture Model on Random Effects.- Á. López-Oriona, J. A. Vilar, and P. D?Urso: Unsupervised Classification of Categorical Time Series Through Innovative Distances.- D. Masís, E. Segura, J. Trejos, and A. Xavier: Fuzzy Clustering by Hyperbolic Smoothing.- R. Meng, H. K. H. Lee, and K. Bouchard: Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Networks.- H. Duy Nguyen, F. Forbes, G. Fort, and O. Cappé: An Online Minorization-Maximization Algorithm.- L. Palazzo and R. Ievoli: Detecting Differences in Italian Regional Health Services During Two Covid-19 Waves.- G. Panagiotidou and T. Chadjipadelis: Political and Religion Attitudes in Greece: Behavioral Discourses.- K. Pawlasová, I. Karafiátová, and J. Dvořák: Supervised Classification via Neural Networks for Replicated Point Patterns.- G. Perrone and G. Soffritti: Parsimonious Mixtures of Seemingly Unrelated Contaminated Normal Regression Models.- N. Pronello, R. Ignaccolo, L. Ippoliti, and S. Fontanella: Penalized Model-based Functional Clustering: a Regularization Approach via Shrinkage Methods.- D. Rodrigues, L. P. Reis, and B. M. Faria: Emotion Classification Based on Single Electrode Brain Data: Applications for Assistive Technology.- R. Scimone, A. Menafoglio, L. M. Sangalli, and P. Secchi: The Death Process in Italy Before and During the Covid-19 Pandemic: a Functional Compositional Approach.- O. Silva, Á. Sousa, and H. Bacelar-Nicolau: Clustering Validation in the Context of Hierarchical Cluster Analysis: an Empirical Study.- C. Silvestre, M. G. M. S. Cardoso, and M. Figueiredo: An MML Embedded Approach for Estimating the Number of Clusters.- Á. Sousa, O. Silva, M. Graça Batista, S. Cabral, and H. Bacelar-Nicolau: Typology of Motivation Factors for Employees in the Banking Sector: An Empirical Study Using Multivariate Data Analysis Methods.- J. Michael Spoor, J. Weber, and J. Ovtcharova: A Proposal for Formalization and Definition of Anomalies in Dynamical Systems.- N. Tahiri and A. Koshkarov: New Metrics for Classifying Phylogenetic Trees Using -means and the Symmetric Difference Metric.- S. D. Tomarchio: On Parsimonious Modelling via Matrix-variate t Mixtures.- G. Zammarchi, M. Romano, and C. Conversano: Evolution of Media Coverage on Climate Change and Environmental Awareness: an Analysisof Tweets from UK and US Newspapers.
Több

Classification and Data Science in the Digital Age
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
18 151 Ft

Managing Information Technology Projects: Building A Body Of Knowledge In It Project Management
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
73 384 Ft

The Slow Cooker Cookbook: Affordable and convenient meals for your family
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
7 586 Ft

Kendall's Muscles: Testing and Function with Posture and Pain 6e Lippincott Connect Print Book and Digital Access Card Package
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
93 491 Ft

Discourse in the Digital Age: Social Media, Power, and Society
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
73 384 Ft

Decolonizing Methodologies: Research and Indigenous Peoples
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
10 116 Ft