• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Applications of AI for Interdisciplinary Research

    Applications of AI for Interdisciplinary Research by Gill, Sukhpal Singh;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 97.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        49 592 Ft (47 231 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 9 918 Ft off)
      • Discounted price 39 674 Ft (37 785 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1
    • Kiadó CRC Press
    • Megjelenés dátuma 2024. szeptember 13.

    • ISBN 9781032733302
    • Kötéstípus Keménykötés
    • Terjedelem312 oldal
    • Méret 254x178 mm
    • Súly 734 g
    • Nyelv angol
    • Illusztrációk 21 Illustrations, black & white; 115 Illustrations, color; 34 Halftones, color; 22 Line drawings, black & white; 80 Line drawings, color; 51 Tables, black & white
    • 637

    Kategóriák

    Rövid leírás:

    In order to gather, integrate, and synthesise the many results and viewpoints in the connected domains, refer to it as interdisciplinary research. In light of this, the theory, techniques, and applications of machine learning and AI, as well as how they are utilised across disciplinary boundaries, are the main areas of this research topic.

    Több

    Hosszú leírás:

    Applying artificial intelligence (AI) to new fields has made AI and data science indispensable to researchers in a wide range of fields. The proliferation and successful deployment of AI algorithms are fuelling these changes, which can be seen in fields as disparate as healthcare and emerging Internet of Things (IoT) applications. Machine learning techniques, and AI more broadly, are expected to play an ever-increasing role in the modelling, simulation, and analysis of data from a wide range of fields by the interdisciplinary research community. Ideas and techniques from multidisciplinary research are being utilised to enhance AI; hence, the connection between the two fields is a two-way street at a crossroads. Algorithms for inference, sampling, and optimisation, as well as investigations into the efficacy of deep learning, frequently make use of methods and concepts from other fields of study. Cloud computing platforms may be used to develop and deploy several AI models with high computational power. The intersection between multiple fields, including math, science, and healthcare, is where the most significant theoretical and methodological problems of AI may be found. To gather, integrate, and synthesise the many results and viewpoints in the connected domains, refer to it as interdisciplinary research. In light of this, the theory, techniques, and applications of machine learning and AI, as well as how they are utilised across disciplinary boundaries, are the main areas of this research topic.



    • This book apprises the readers about the important and cutting-edge aspects of AI applications for interdisciplinary research and guides them to apply their acquaintance in the best possible manner

    • This book is formulated with the intent of uncovering the stakes and possibilities involved in using AI through efficient interdisciplinary applications

    • The main objective of this book is to provide scientific and engineering research on technologies in the fields of AI and data science and how they can be related through interdisciplinary applications and similar technologies

    • This book covers various important domains, such as healthcare, the stock market, natural language processing (NLP), real estate, data security, cloud computing, edge computing, data visualisation using cloud platforms, event management systems, IoT, the telecom sector, federated learning, and network performance optimisation. Each chapter focuses on the corresponding subject outline to offer readers a thorough grasp of the concepts and technologies connected to AI and data analytics, and their emerging applications

    Több

    Tartalomjegyzék:


    Part I  Healthcare 


    Chapter 1 ? Machine Learning-Based Prediction of Thyroid Disease


    Tanjina Rhaman and Sukhpal Singh Gill


    Chapter 2 ? HeartGuard: A Deep Learning Approach for Cardiovascular Risk Assessment Using Biomedical Indicators Using Cloud Computing


    Parinaz Banifatemi and Sukhpal Singh Gill


    Chapter 3 ? Deep Convolutional Neural Networks-Based Skin Lesion Classification for Cancer Prediction


    Neelam Rathore and Sukhpal Singh Gill


    Chapter 4 ? Explainable AI for Cancer Prediction: A Model Analysis


    Aswin Kumar Govindan and Sukhpal Singh Gill


    Chapter 5 ? Machine Learning-Based Web Application for Breast Cancer Prediction


    Shabnam Manjuri and Sukhpal Singh Gill


    Part II Natural Language Programming (NLP)


    Chapter 6 ? Machine Learning-Based Opinion Mining and Visualization of News RSS Feeds for Efficient Information Gain


    Jairaj Patil and Sukhpal Singh Gill


    Part III Economics and Finance


    Chapter 7 ? Advanced Machine Learning Models for Real Estate Price Prediction


    Satyam Sharma and Sukhpal Singh Gill


    Chapter 8 ? Stock Market Price Prediction: A Hybrid LSTM and Sequential Self-Attention-Based Approach


    Karan Pardeshi, Sukhpal Singh Gill, and Ahmed M. Abdelmoniem


    Chapter 9 ? Federated Learning for the Predicting Household Financial Expenditure


    Ho Kuen Lai, Ahmed M. Abdelmoniem, and Sukhpal Singh Gill


    Part IV Computing and Business


    Chapter 10 ? Deep Neural Network-Based Prediction of Breast Cancer Using Cloud Computing


    Sindhu Muthumanickam and Sukhpal Singh Gill


    Chapter 11 ? Performance Analysis of Machine Learning Models for Data Visualisation in SME: Google Cloud vs. AWS Cloud


    Jisma Choudhury and Sukhpal Singh Gill


    Part V Security and Edge/Cloud Computing


    Chapter 12 ? Enhancing Data Security for Cloud Service Providers Using AI


    Muhammed Golec, Sai Siddharth Ponugoti, and Sukhpal Singh Gill


    Chapter 13 ? Centralised and Decentralised Fraud Detection Approaches in Federated Learning: A Performance Analysis


    Shai Lynch, Ahmed M. Abdelmoniem, and Sukhpal Singh Gill


    Contents ? vii


    Chapter 14 ? AI-Based Edge Node Protection for Optimizing Security in Edge Computing


    Muhammed Golec, Waleed Ul Hassan, and Sukhpal Singh Gill


    Part VI Telecom Sector and Network


    Chapter 15 ? Predictive Analytics for Optical Interconnection Network Performance Optimisation in Telecom Sector


    Suganya Senguttuvan and Sukhpal Singh Gill


    Part VII Emotional Intelligence


    Chapter 16 ? Machine Learning-Based Emotional State Inference Using Mobile Sensing


    Diogo Mota, Usman Naeem, and Sukhpal Singh Gill


    Part VIII Internet of Things (IoT) and Mobile Applications


    Chapter 17 ? Social Event Tracking System with Real-Time Data Using Machine Learning


    Muhammad Usman Nazir and Sukhpal Singh Gill

    Több
    Mostanában megtekintett
    previous
    Applications of AI for Interdisciplinary Research

    Applications of AI for Interdisciplinary Research

    Gill, Sukhpal Singh; (ed.)

    49 592 Ft

    next