
An Introduction to Optimization on Smooth Manifolds
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 100.00
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 5 061 Ft off)
- Discounted price 45 549 Ft (43 380 Ft + 5% áfa)
50 610 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Cambridge University Press
- Megjelenés dátuma 2023. március 16.
- ISBN 9781009166171
- Kötéstípus Keménykötés
- Terjedelem400 oldal
- Méret 257x181x23 mm
- Súly 890 g
- Nyelv angol 557
Kategóriák
Rövid leírás:
An invitation to optimization with Riemannian geometry for applied mathematics, computer science and engineering students and researchers.
TöbbHosszú leírás:
Optimization on Riemannian manifolds-the result of smooth geometry and optimization merging into one elegant modern framework-spans many areas of science and engineering, including machine learning, computer vision, signal processing, dynamical systems and scientific computing. This text introduces the differential geometry and Riemannian geometry concepts that will help students and researchers in applied mathematics, computer science and engineering gain a firm mathematical grounding to use these tools confidently in their research. Its charts-last approach will prove more intuitive from an optimizer's viewpoint, and all definitions and theorems are motivated to build time-tested optimization algorithms. Starting from first principles, the text goes on to cover current research on topics including worst-case complexity and geodesic convexity. Readers will appreciate the tricks of the trade for conducting research and for numerical implementations sprinkled throughout the book.
'With its inviting embedded-first progression and its many examples and exercises, this book constitutes an excellent companion to the literature on Riemannian optimization - from the early developments in the late 20th century to topics that have gained prominence since the 2008 book 'Optimization Algorithms on Matrix Manifolds', and related software, such as Manopt/Pymanopt/Manopt.jl.' P.-A. Absil, University of Louvain
Tartalomjegyzék:
Notation; 1. Introduction; 2. Simple examples; 3. Embedded geometry: first order; 4. First-order optimization algorithms; 5. Embedded geometry: second order; 6. Second-order optimization algorithms; 7. Embedded submanifolds: examples; 8. General manifolds; 9. Quotient manifolds; 10. Additional tools; 11. Geodesic convexity; References; Index.
Több
An Introduction to Optimization on Smooth Manifolds
Iratkozzon fel most és részesüljön kedvezőbb árainkból!
Feliratkozom
50 610 Ft