• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    An Introduction to Enumeration

    An Introduction to Enumeration by Camina, Alan; Lewis, Barry;

    Sorozatcím: Springer Undergraduate Mathematics Series; 0;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 37.44
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        15 882 Ft (15 125 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 3 176 Ft off)
      • Discounted price 12 705 Ft (12 100 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 2011
    • Kiadó Springer
    • Megjelenés dátuma 2011. május 18.
    • Kötetek száma 1 pieces, Book

    • ISBN 9780857295996
    • Kötéstípus Puhakötés
    • Terjedelem232 oldal
    • Méret 235x155 mm
    • Súly 454 g
    • Nyelv angol
    • Illusztrációk 62 Illustrations, black & white
    • 0

    Kategóriák

    Rövid leírás:

    Written for students taking a second or third year undergraduate course in mathematics or computer science, this book is the ideal companion to a course in enumeration. Enumeration is a branch of combinatorics where the fundamental subject matter is numerous methods of pattern formation and counting. An Introduction to Enumeration provides a comprehensive and practical introduction to this subject giving a clear account of fundamental results and a thorough grounding in the use of powerful techniques and tools.

    Two major themes run in parallel through the book,  generating functions and group theory. The former theme takes enumerative sequences and then uses analytic tools to discover how they are made up. Group theory provides a concise introduction to groups and illustrates how the theory can be used  to count the number of symmetries a particular object has. These enrich and extend basic group ideas and techniques.

    The authors present their material through examples that are carefully chosen to establish key results in a natural setting. The aim is to progressively build fundamental theorems and techniques. This development is interspersed with exercises that consolidate ideas and build confidence. Some exercises are linked to particular sections while others range across a complete chapter. Throughout, there is an attempt to present key enumerative ideas in a graphic way, using diagrams to make them immediately accessible. The development assumes some basic group theory, a familiarity with analytic functions and their power series expansion along with  some basic linear algebra.

    Több

    Hosszú leírás:


    Written for students taking a second or third year undergraduate course in mathematics or computer science, this book is the ideal companion to a course in enumeration. Enumeration is a branch of combinatorics where the fundamental subject matter is numerous methods of pattern formation and counting. Introduction to Enumeration provides a comprehensive and practical introduction to this subject giving a clear account of fundamental results and a thorough grounding in the use of powerful techniques and tools.

    Two major themes run in parallel through the book,  generating functions and group theory. The former theme takes enumerative sequences and then uses analytic tools to discover how they are made up. Group theory provides a concise introduction to groups and illustrates how the theory can be used  to count the number of symmetries a particular object has. These enrich and extend basic group ideas and techniques.

    The authors present their material through examples that are carefully chosen to establish key results in a natural setting. The aim is to progressively build fundamental theorems and techniques. This development is interspersed with exercises that consolidate ideas and build confidence. Some exercises are linked to particular sections while others range across a complete chapter. Throughout, there is an attempt to present key enumerative ideas in a graphic way, using diagrams to make them immediately accessible. The development assumes some basic group theory, a familiarity with analytic functions and their power series expansion along with  some basic linear algebra.



    From the reviews:

    ?This work is a very basic, short introduction to combinatorial enumeration techniques. Camina (Univ. of East Anglia, UK) and Lewis (The Mathematical Association, UK) properly explain the fundamental concepts ? . There are 20-25 exercises per chapter ? . The numerical answers to the majority of these exercises are included at the end. ? It may be useful for students who need very basic enumeration skills ? . Summing Up ? . Lower- and upper-division undergraduates.? (M. Bona, Choice, Vol. 49 (4), December, 2011)

    ?This book is written as an introduction to enumeration for second or third year undergraduate students in mathematics or computer science. Its theme is counting, using finite or infinite series ? . The development is interspersed with exercises, linked to particular sections, or covering a complete chapter. Solutions are provided at the end of the book.? (Andreas N. Philippou, Zentralblatt MATH, Vol. 1230, 2012)

    ?This is an introductory text on counting and combinatorics that has good coverage ? . It is aimed at a sophomore or higher level and has few prerequisites beyond power series. ? There are numerous exercises, and all have brief solutions in the back. ? It is unusual to see a book that combines such extensive coverage with so few prerequisites.? (Allen Stenger, The Mathematical Association of America, August, 2011)

    Több

    Tartalomjegyzék:

    What Is Enumeration?.- Generating Functions Count.- Working with Generating Functions.- Permutation Groups.- Matrices, Sequences and Sums.- Group Actions and Counting.- Exponential Generating Functions.- Graphs.- partitions and Paths.

    Több
    Mostanában megtekintett
    previous
    An Introduction to Enumeration

    An Introduction to Enumeration

    Camina, Alan; Lewis, Barry;

    15 882 Ft

    Developing a Foundation for Learning with Internationally Adopted Children: Family-Based Activities for Remedial Learning and Attachment

    Developing a Foundation for Learning with Internationally Adopted Children: Family-Based Activities for Remedial Learning and Attachment

    Gindis, Boris; Lidz, Carol;

    10 116 Ft

    next