• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    Advances in Data Science
      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 139.09
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        59 001 Ft (56 192 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 11 800 Ft off)
      • Discounted price 47 201 Ft (44 954 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2021
    • Kiadó Springer
    • Megjelenés dátuma 2022. november 30.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783030798932
    • Kötéstípus Puhakötés
    • Terjedelem364 oldal
    • Méret 235x155 mm
    • Súly 587 g
    • Nyelv angol
    • Illusztrációk 19 Illustrations, black & white; 166 Illustrations, color
    • 458

    Kategóriák

    Rövid leírás:

    This volume highlights recent advances in data science, including image processing and enhancement on large data, shape analysis and geometry processing in 2D/3D, exploration and understanding of neural networks, and extensions to atypical data types such as social and biological signals. The contributions are based on discussions from two workshops under Association for Women in Mathematics (AWM), namely the second Women in Data Science and Mathematics (WiSDM) Research Collaboration Workshop that took place between July 29 and August 2, 2019 at the Institute for Computational and Experimental Research in Mathematics (ICERM) in Providence, Rhode Island, and the third Women in Shape (WiSh) Research Collaboration Workshop that took place between July 16 and 20, 2018 at Trier University in Robert-Schuman-Haus, Trier, Germany.

    These submissions, seeded by working groups at the conference, form a valuable source for readers who are interested in ideas and methods developed in interdisciplinary research fields. The book features ideas, methods, and tools developed through a broad range of domains, ranging from theoretical analysis on graph neural networks to applications in health science. It also presents original results tackling real-world problems that often involve complex data analysis on large multi-modal data sources.

    Több

    Hosszú leírás:

    This volume highlights recent advances in data science, including image processing and enhancement on large data, shape analysis and geometry processing in 2D/3D, exploration and understanding of neural networks, and extensions to atypical data types such as social and biological signals. The contributions are based on discussions from two workshops under Association for Women in Mathematics (AWM), namely the second Women in Data Science and Mathematics (WiSDM) Research Collaboration Workshop that took place between July 29 and August 2, 2019 at the Institute for Computational and Experimental Research in Mathematics (ICERM) in Providence, Rhode Island, and the third Women in Shape (WiSh) Research Collaboration Workshop that took place between July 16 and 20, 2018 at Trier University in Robert-Schuman-Haus, Trier, Germany.



    These submissions, seeded by working groups at the conference, form a valuable source for readers who are interested in ideas and methods developed in interdisciplinary research fields. The book features ideas, methods, and tools developed through a broad range of domains, ranging from theoretical analysis on graph neural networks to applications in health science. It also presents original results tackling real-world problems that often involve complex data analysis on large multi-modal data sources.



    ?The topics covered are quite interdisciplinary and related to cutting-edge research in data science. ? This book describes results from the forefront of research in data science and would greatly benefit aspiring researchers at the master?s and PhD levels. Each chapter contains ample references to the related literature.? (S. Lakshmivarahan, Computing Reviews, February 21, 2023)

    Több

    Tartalomjegyzék:

    Part I: Image Processing.- Two-stage Geometric Information Guided Image Processing (J. Qin and W. Guo).- Image Edge Sharpening via Heaviside Substitution and Structure Recovery (L. Deng, W. Guo, and T. Huang).- Two-step Blind Deconvolution of UPC-A Barcode Images (B. Kim and Y. Lou).- Part II: Shape and Geometry.- An Anisotropic Local Method for Boundary Detection in Images (M. Lund, M. Howard, D. Wu, R. S. Crum, D. J. Miller, and M. C. Akin).- Towards Learning Geometric Shape Parts (A. Fondevilla, G. Morin, and K. Leonard).- Machine Learning in LiDAR 3D Point Clouds (F. P. Medina and R. Paffenroth).- Part III: Machine Learning.- Fitting Small Piece-wise Linear Neural Network Models to Interpolate Data Sets (L. Ness).- On Large-Scale Dynamic Topic Modelling with Nonnegative CP Tensor Decomposition (M. Ahn, N. Eikmeier, J. Haddock, L. Kassab, A. Kryshchenko, K. Leonard, D. Needell, R. W. M. A. Madushani, E. Sizikova, and C. Wang).- A Simple Recovery Framework for Signals with Time-Varying Sparse Support (N. Durgin, R. Grotheer, C. Huang, S. Li, A. Ma, D. Needell, and J. Qin).- Part IV: Data Analysis.- Role Detection and Prediction in Dynamic Political Networks (E. Evans, W. Guo, A. Genctav, S. Tari, C. Domeniconi, A. Murillo, J. Chuang, L. AlSumait, P. Mani, and N. Youssry).- Classifying Sleep States Using Persistent Homology and Markov Chains: A Pilot Study (S. Tymochko, K. Singhal, and G. Heo).- A Survey of Statistical Learning Techniques as Applied to Inexpensive Pediatric Obstructive Sleep Apnea Data (E. T. Winn, M. Vazquez, P. Loliencar, K. Taipale, X. Wang, and G. Heo).- Nonparametric Estimation of Blood Alcohol Concentration from Transdermal Alcohol Measurements Using Alcohol Biosensor Devices (A. Kryshchenko, M. Sirlanci, and B. Vader).

    Több
    Mostanában megtekintett
    previous
    Advances in Data Science

    Advances in Data Science

    Demir, Ilke; Lou, Yifei; Wang, Xu;(ed.)

    59 001 Ft

    next