
A Quantum Groups Primer
Sorozatcím: London Mathematical Society Lecture Note Series; 292;
-
10% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár GBP 34.99
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 10% (cc. 1 771 Ft off)
- Discounted price 15 937 Ft (15 179 Ft + 5% áfa)
17 708 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadó Cambridge University Press
- Megjelenés dátuma 2002. április 4.
- ISBN 9780521010412
- Kötéstípus Puhakötés
- Terjedelem180 oldal
- Méret 228x152x17 mm
- Súly 265 g
- Nyelv angol
- Illusztrációk 23 b/w illus. 50 exercises 0
Kategóriák
Rövid leírás:
Self-contained introduction to quantum groups as algebraic objects, suitable as a textbook for graduate courses.
TöbbHosszú leírás:
This book provides a self-contained introduction to quantum groups as algebraic objects. Based on the author's lecture notes from a Part III pure mathematics course at Cambridge University, it is suitable for use as a textbook for graduate courses in quantum groups or as a supplement to modern courses in advanced algebra. The book assumes a background knowledge of basic algebra and linear algebra. Some familiarity with semisimple Lie algebras would also be helpful. The book is aimed as a primer for mathematicians and takes a modern approach leading into knot theory, braided categories and noncommutative differential geometry. It should also be useful for mathematical physicists.
'... would serve admirably - as the author suggests - as the basis for a taught graduate course ... this book is a clearly written painless read. I can recommend this text as an entry work for those wishing to acquaint themselves with the still popular topic of quantum groups.' A. I. Solomon, Contemporary Physics
Tartalomjegyzék:
Preface; 1. Coalgebras, bialgebras and Hopf algebras. Uq(b+); 2. Dual pairing. SLq(2). Actions; 3. Coactions. Quantum plane A2q; 4. Automorphism quantum groups; 5. Quasitriangular structures; 6. Roots of Unity. uq(sl2); 7. q-Binomials; 8. quantum double. Dual-quasitriangular structures; 9. Braided categories; 10 (Co)module categories. Crossed modules; 11. q-Hecke algebras; 12. Rigid objects. Dual representations. Quantum dimension; 13. Knot invariants; 14. Hopf algebras in braided categories; 15. Braided differentiation; 16. Bosonisation. Inhomogeneous quantum groups; 17. Double bosonisation. Diagrammatic construction of uq(sl2); 18. The braided group Uq(n-). Construction of Uq(g); 19. q-Serre relations; 20. R-matrix methods; 21. Group algebra, Hopf algebra factorisations. Bicrossproducts; 22. Lie bialgebras. Lie splittings. Iwasawa decomposition; 23. Poisson geometry. Noncommutative bundles. q-Sphere; 24. Connections. q-Monopole. Nonuniversal differentials; Problems; Bibliography; Index.
Több