• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    A Guide to Convolutional Neural Networks for Computer Vision

    A Guide to Convolutional Neural Networks for Computer Vision by Khan, Salman; Rahmani, Hossein; Shah, Syed Afaq Ali;

    Sorozatcím: Synthesis Lectures on Computer Vision;

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 69.54
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        29 498 Ft (28 094 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 5 900 Ft off)
      • Discounted price 23 599 Ft (22 475 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    Hosszú leírás:

    Computer vision has become increasingly important and effective in recent years due to its wide-ranging applications in areas as diverse as smart surveillance and monitoring, health and medicine, sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image classification, localization, and detection, are the core building blocks of many of these applications, and recent developments in Convolutional Neural Networks (CNNs) have led to outstanding performance in these state-of-the-art visual recognition tasks and systems. As a result, CNNs now form the crux of deep learning algorithms in computer vision.


    This self-contained guide will benefit those who seek to both understand the theory behind CNNs and to gain hands-on experience on the application of CNNs in computer vision. It provides a comprehensive introduction to CNNs starting with the essential concepts behind neural networks: training, regularization, and optimization of CNNs.The book also discusses a wide range of loss functions, network layers, and popular CNN architectures, reviews the different techniques for the evaluation of CNNs, and presents some popular CNN tools and libraries that are commonly used in computer vision. Further, this text describes and discusses case studies that are related to the application of CNN in computer vision, including image classification, object detection, semantic segmentation, scene understanding, and image generation.


    This book is ideal for undergraduate and graduate students, as no prior background knowledge in the field is required to follow the material, as well as new researchers, developers, engineers, and practitioners who are interested in gaining a quick understanding of CNN models.

    Több

    Tartalomjegyzék:

    Preface.- Acknowledgments.- Introduction.- Features and Classifiers.- Neural Networks Basics.- Convolutional Neural Network.- CNN Learning.- Examples of CNN Architectures.- Applications of CNNs in Computer Vision.- Deep Learning Tools and Libraries.- Conclusion.- Bibliography.- Authors' Biographies.

    Több
    Mostanában megtekintett
    previous
    A Guide to Convolutional Neural Networks for Computer Vision

    A Guide to Convolutional Neural Networks for Computer Vision

    Khan, Salman; Rahmani, Hossein; Shah, Syed Afaq Ali;

    29 498 Ft

    Mathematics for Engineers and Science Labs Using Maxima

    Mathematics for Engineers and Science Labs Using Maxima

    Kadry, Seifedine; Awad, Pauly;

    42 001 Ft

    Mathematics for Engineers and Science Labs Using Maxima

    Mathematics for Engineers and Science Labs Using Maxima

    Kadry, Seifedine; Awad, Pauly;

    58 707 Ft

    Multiple Detection in Size-Exclusion Chromatography

    Multiple Detection in Size-Exclusion Chromatography

    Striegel, André M.; (ed.)

    26 823 Ft

    next