• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Prospero könyvpiaci podcast

  • Hírek

  • 0
    101+  Great Ideas for Introducing Key Concepts in Mathematics: A Resource for Secondary School Teachers

    101+ Great Ideas for Introducing Key Concepts in Mathematics by Posamentier, Alfred S.; Hauptman, Herbert A.;

    A Resource for Secondary School Teachers

      • 20% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár GBP 33.99
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        17 202 Ft (16 383 Ft + 5% áfa)
      • Kedvezmény(ek) 20% (cc. 3 440 Ft off)
      • Discounted price 13 762 Ft (13 106 Ft + 5% áfa)

    Beszerezhetőség

    Megrendelésre a kiadó utánnyomja a könyvet. Rendelhető, de a szokásosnál kicsit lassabban érkezik meg.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma Second Edition
    • Kiadó Corwin
    • Megjelenés dátuma 2006. június 27.

    • ISBN 9781412927062
    • Kötéstípus Puhakötés
    • Terjedelem296 oldal
    • Méret 254x177 mm
    • Nyelv angol
    • 0

    Kategóriák

    Rövid leírás:

    Invigorate instruction and engage students with this updated treasure trove of 114 ready-to-use techniques compiled by two of the greatest minds in mathematics.

    Több

    Hosszú leírás:

    Multiply math mastery and interest with these inspired teaching tactics!

    Invigorate instruction and engage students with this treasure trove of "Great Ideas" compiled by two of the greatest minds in mathematics. From commonly taught topics in algebra, geometry, trigonometry, and statistics, to more advanced explorations into indirect proofs, binomial theorem, irrationality, relativity, and more, this guide outlines concepts and techniques that will inspire veteran and new educators alike.

    This updated second edition offers more proven practices for bringing math concepts to life in the classroom, including:

    • 114 innovative strategies organized by subject area
    • User-friendly content identifying "objective," "materials," and "procedure" for each technique
    • A range of teaching models, including hands-on and computer-based methods
    • Specific and straightforward examples with step-by-step lessons

    Written by two distinguished leaders in the field-mathematician, author, professor, university dean, and popular commentator Alfred S. Posamentier, along with mathematical pioneer and Nobel Prize recipient Herbert A. Hauptman-this guide brings a refreshing perspective to secondary math instruction to spark renewed interest and success among students and teachers.



    Praise for the First Edition:  

    "Written to appeal to all mathematics teachers. Teachers who are struggling with introducing these topical ideas will find the book is written in such a way as to facilitate their understanding of the topics. The language is easy to understand and the book is very user friendly. In addition, those teachers who have a sound grasp of these key concepts can find fresh ideas for teaching old concepts presented in a manner that is intellectual in design.?    

    Több

    Tartalomjegyzék:

    Preface
    Acknowledgments
    About the Authors
    Introductory Idea
    Coming to Terms With Mathematical Terms
    Algebra Ideas
    1. Introducing the Product of Two Negatives
    2. Multiplying Polynomials by Monomials (Introducing Algebra Tiles)
    3. Multiplying Binomials (Using Algebra Tiles)
    4. Factoring Trinomials (Using Algebra Tiles)
    5. Multiplying Binomials (Geometrically)
    6. Factoring Trinomials (Geometrically)
    7. Trinomial Factoring
    8. How Algebra Can Be Helpful
    9. Automatic Factoring of a Trinomial
    10. Reasoning Through Algebra
    11. Pattern Recognition Cautions
    12. Caution With Patterns
    13. Using a Parabola as a Calculator
    14. Introducing Literal Equations: Simple Algebra to Investigate an Arithmetic Phenomenon
    15. Introducing Nonpositive Integer Exponents
    16. Importance of Definitions in Mathematics (Algebra)
    17. Introduction to Functions
    18. When Algebra Explains Arithmetic
    19. Sum of an Arithmetic Progression
    20. Averaging Rates
    21. Using Triangular Numbers to Generate Interesting Relationships
    22. Introducing the Solution of Quadratic Equations Through Factoring
    23. Rationalizing the Denominator
    24. Paper Folding to Generate a Parabola
    25. Paper Folding to Generate an Ellipse
    26. Paper Folding to Generate a Hyperbola
    27. Using Concentric Circles to Generate a Parabola
    28. Using Concentric Circles to Generate an Ellipse
    29. Using Concentric Circles to Generate a Hyperbola
    30. Summing a Series of Powers
    31. Sum of Limits
    32. Linear Equations With Two Variables
    33. Introducing Compound Interest Using the "Rule of 72?
    34. Generating Pythagorean Triples
    35. Finding Sums of Finite Series Geometry Ideas
    Geometry Ideas
    1. Sum of the Measures of the Angles of a Triangle
    2. Introducing the Sum of the Measures of the Interior Angles of a Polygon
    3. Sum of the Measures of the Exterior Angles of a Polygon: I
    4. Sum of the Measures of the Exterior Angles of a Polygon: II
    5. Triangle Inequality
    6. Don?t Necessarily Trust Your Geometric Intuition
    7. Importance of Definitions in Mathematics (Geometry)
    8. Proving Quadrilaterals to Be Parallelograms
    9. Demonstrating the Need to Consider All Information Given
    10. Midlines of a Triangle
    11. Length of the Median of a Trapezoid
    12. Pythagorean Theorem
    13. Simple Proofs of the Pythagorean Theorem
    14. Angle Measurement With a Circle by Moving the Circle
    15. Angle Measurement With a Circle
    16. Introducing and Motivating the Measure of an Angle Formed by Two Chords
    17. Using the Property of the Opposite Angles of an Inscribed Quadrilateral
    18. Introducing the Concept of Slope
    19. Introducing Concurrency Through Paper Folding
    20. Introducing the Centroid of a Triangle
    21. Introducing the Centroid of a Triangle Via a Property
    22. Introducing Regular Polygons
    23. Introducing Pi
    24. The Lunes and the Triangle
    25. The Area of a Circle
    26. Comparing Areas of Similar Polygons
    27. Relating Circles
    28. Invariants in Geometry
    29. Dynamic Geometry to Find an Optimum Situation
    30. Construction-Restricted Circles
    31. Avoiding Mistakes in Geometric Proofs
    32. Systematic Order in Successive Geometric Moves: Patterns!
    33. Introducing the Construction of a Regular Pentagon
    34. Euclidean Constructions and the Parabola
    35. Euclidean Constructions and the Ellipse
    36. Euclidean Constructions and the Hyperbola
    37. Constructing Tangents to a Parabola From an External Point P
    38. Constructing Tangents to an Ellipse
    39. Constructing Tangents to a Hyperbola
    Trigonometry Ideas
    1. Derivation of the Law of Sines: I
    2. Derivation of the Law of Sines: II
    3. Derivation of the Law of Sines: III
    4. A Simple Derivation for the Sine of the Sum of Two Angles
    5. Introductory Excursion to Enable an Alternate Approach to Trigonometry Relationships
    6. Using Ptolemy?s Theorem to Develop Trigonometric Identities for Sums and Differences of Angles
    7. Introducing the Law of Cosines: I (Using Ptolemy?s Theorem)
    8. Introducing the Law of Cosines: II
    9. Introducing the Law of Cosines: III
    10. Alternate Approach to Introducing Trigonometric Identities
    11. Converting to Sines and Cosines
    12. Using the Double Angle Formula for the Sine Function
    13. Making the Angle Sum Function Meaningful
    14. Responding to the Angle-Trisection Question
    Probability and Statistics Ideas
    1. Introduction of a Sample Space
    2. Using Sample Spaces to Solve Tricky Probability Problems
    3. Introducing Probability Through Counting (or Probability as Relative Frequency)
    4. In Probability You Cannot Always Rely on Your Intuition
    5. When ?Averages? Are Not Averages: Introducing Weighted Averages
    6. The Monty Hall Problem: ?Let?s Make a Deal?
    7. Conditional Probability in Geometry
    8. Introducing the Pascal Triangle
    9. Comparing Means Algebraically
    10. Comparing Means Geometrically
    11. Gambling Can Be Deceptive
    Other Topics Ideas
    1. Asking the Right Questions
    2. Making Arithmetic Means Meaningful
    3. Using Place Value to Strengthen Reasoning Ability
    4. Prime Numbers
    5. Introducing the Concept of Relativity
    6. Introduction to Number Theory
    7. Extracting a Square Root
    8. Introducing Indirect Proof
    9. Keeping Differentiation Meaningful
    10. Irrationality of the Square Root of an Integer That Is Not a Perfect Square
    11. Introduction to the Factorial Function x!
    12. Introduction to the Function x to the (n) Power
    13. Introduction to the Two Binomial Theorems
    14. Factorial Function Revisited
    15. Extension of the Factorial Function r! to the Case Where r Is Rational
    16. Prime Numbers Revisited
    17. Perfect Numbers

    Több
    Mostanában megtekintett
    previous
    101+  Great Ideas for Introducing Key Concepts in Mathematics: A Resource for Secondary School Teachers

    101+ Great Ideas for Introducing Key Concepts in Mathematics: A Resource for Secondary School Teachers

    Posamentier, Alfred S.; Hauptman, Herbert A.;

    17 202 Ft

    next