
Ziele des Mathematikunterrichts ? Ideen für den Lehrer
Ideen für d. Lehrer
- Publisher's listprice EUR 54.99
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 8% (cc. 1 866 Ft off)
- Discounted price 21 460 Ft (20 438 Ft + 5% VAT)
23 326 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1983
- Publisher Vieweg+Teubner Verlag
- Date of Publication 1 January 1983
- Number of Volumes 1 pieces, Book
- ISBN 9783528085155
- Binding Paperback
- No. of pages79 pages
- Size 229x152 mm
- Weight 152 g
- Language German
- Illustrations 79 S. 0
Categories
Long description:
Springer Book Archives
MoreTable of Contents:
1 Gründe für eine Taxonomie mathematischer Lernziele.- 1.1 Das Curriculum im Wandel.- 1.2 Allgemeine Erziehungsziele.- 1.3 Allgemeine Lernziele des Mathematikunterrichts.- 1.4 Spezielle Lernziele und Evaluation.- 1.5 Die Gefahr der Überbetonung von Lernzielen niedrigen Niveaus.- 1.6 Die Unbestimmtheit von Verständnis.- 1.7 Die Notwendigkeit eines Modells für die Lernzielbestimmung.- 2 Eine Taxonomie mathematischer Lernziele.- 2.1 Niveaus mathematischen Denkens.- 2.2 Die Kategorien der Taxonomie.- 3 Lernen von Begriffen, Verallgemeinerungen und Algorithmen.- 3.1 Wissen.- 3.2 Verstehen.- 3.3 Anwenden.- 4 Problemlösen.- 4.1 Unterschiede zwischen algorithmischem Denken und Problemlösen auf höherem Niveau.- 4.2 Analyse.- 4.3 Synthese.- 5 Was kann der Lehrer tun?.- 5.1 Vom Erreichen der Unterrichtsziele..- 5.2 Aufgabenanalyse.- 5.3 Es gibt keine etablierte Methode.- 5.4 Der Lehrer muß sich der vollen Spannweite mathematischer Leistungskategorien bewußt sein.- 5.5 Gutes Verstehen ist wesentlich..- 5.6 Man setze zahlreiche Modelle ein.- 5.7 Man konfrontiere die Schüler mit Problemlösungen auf höherem Niveau.- 5.8 Man betone allgemein anwendbare Strategien.- 5.9 Man unterrichte Verfahren, nicht Formeln..- 5.10 Man baue den Unterricht auf Problemen auf.- 5.11 Bewertung von Schülerleistungen.- 5.12 Man experimentiere mit Methoden zur Anregung von Denken auf höherem Niveau.- 6 Einige zusätzliche Ziele und Anregungen für den Unterricht.- 6.1 Wirksamkeit von Lösungsverfahren.- 6.2 Verständnis von Begriffen.- 6.3 Ein fragenförderndes Klima.- 6.4 Individuelle Lektüre mathematischer Texte.- 6.5 Die Fähigkeit zur systematischen Untersuchung eines Problems.- 6.6 Ein Modell für besseren Unterricht zur Erreichung der Lernziele.- Anhang: Zusätzliche Aufgabe.-Literaturverzeichni.
More