• Contact

  • Newsletter

  • About us

  • Delivery options

  • Prospero Book Market Podcast

  • The Quantization of Gravity

    The Quantization of Gravity by Gerhardt, Claus;

    Series: Fundamental Theories of Physics; 194;

      • GET 12% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice EUR 128.39
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        54 193 Ft (51 612 Ft + 5% VAT)
      • Discount 12% (cc. 6 503 Ft off)
      • Discounted price 47 689 Ft (45 419 Ft + 5% VAT)

    54 193 Ft

    Availability

    Out of print

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Product details:

    • Edition number 1st ed. 2018
    • Publisher Springer
    • Date of Publication 18 April 2018
    • Number of Volumes 1 pieces, Book

    • ISBN 9783319773704
    • Binding Hardback
    • No. of pages200 pages
    • Size 235x155 mm
    • Weight 489 g
    • Language English
    • Illustrations XII, 200 p.
    • 0

    Categories

    Short description:

    ?A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions  for each of the eigenvalues $\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological constant. The hyperbolic equation then has a sequence of smooth solutions which are  products of temporal eigenfunctions and spatial eigendistributions. Due to this "spectral resolution" of the wave equation quantum statistics can also be applied to the quantized systems. These quantum statistical results could help to explain the nature of dark matter and dark energy.  

    More

    Long description:

    ?A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions  for each of the eigenvalues $\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological constant. The hyperbolic equation then has a sequence of smooth solutions which are  products of temporal eigenfunctions and spatial eigendistributions. Due to this "spectral resolution" of the wave equation quantum statistics can also be applied to the quantized systems. These quantum statistical results could help to explain the nature of dark matter and dark energy.  



    ?This is an interesting as well as an important book. ? The book is, of course, well written, elegant, and well balanced. ? for anyone doing research in quantizing gravity, the procedure and framework offered by this book will provide a wider and more complete perspective on the challenge. In other words, this should become a textbook or a cited reference for consultation in any advanced course where quantum gravity is one of the main topics.? (Paulo Moniz, Mathematical Reviews, July, 2019)

    More

    Table of Contents:

    The quantization of a globally hyperbolic spacetime.- Interaction of gravity with Yang-Mills and Higgs fields.- The quantum development of an asymptotically Euclidean Cauchy hypersurface.- The quantization of a Schwarzschild-AdS black hole.- The quantization of a Kerr-AdS black hole.- A partition function for quantized globally hyperbolic spacetimes with a negative cosmological constant.- Appendix.

    More
    0