P-graphs for Process Systems Engineering: Mathematical Models and Algorithms

P-graphs for Process Systems Engineering

Mathematical Models and Algorithms
 
Edition number: 1st ed. 2022
Publisher: Springer
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 160.49
Estimated price in HUF:
66 226 HUF (63 072 HUF + 5% VAT)
Why estimated?
 
Your price:

60 928 (58 026 HUF + 5% VAT )
discount is: 8% (approx 5 298 HUF off)
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: Currently 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
 
 
 
Product details:

ISBN13:9783030922153
ISBN10:3030922154
Binding:Hardback
No. of pages:261 pages
Size:235x155 mm
Weight:639 g
Language:English
Illustrations: 112 Illustrations, black & white; 16 Illustrations, color
645
Category:
Short description:

This book discusses the P-graph framework for developing and understanding effective design tools for process systems engineering, and addresses the current state of its theory and applications. The book details the new philosophy of the axioms-based mathematical modelling of processing systems, the basic algorithms, areas of application, future directions, and the proofs of theorems and algorithms. Because of the rigorous foundation of the theory, the framework provides a firm basis for future research in mathematical modelling, optimization, and design of complex engineering systems. The various P-graph applications discussed include process network synthesis, reliability engineering, and systems resilience. The framework opens new avenues for research in complex systems including redundant operations for critical infrastructure, systems sustainability, and modelling tools for disaster engineering. Demonstration software is provided to facilitate the understanding of the theory. Thebook will be of interest to institutions, companies, and individuals performing research and R&D in process systems engineering.

Long description:

This book discusses the P-graph framework for developing and understanding effective design tools for process systems engineering, and addresses the current state of its theory and applications. The book details the new philosophy of the axioms-based mathematical modelling of processing systems, the basic algorithms, areas of application, future directions, and the proofs of theorems and algorithms. Because of the rigorous foundation of the theory, the framework provides a firm basis for future research in mathematical modelling, optimization, and design of complex engineering systems. The various P-graph applications discussed include process network synthesis, reliability engineering, and systems resilience. The framework opens new avenues for research in complex systems including redundant operations for critical infrastructure, systems sustainability, and modelling tools for disaster engineering. Demonstration software is provided to facilitate the understanding of the theory. The book will be of interest to institutions, companies, and individuals performing research and R&D in process systems engineering.

Table of Contents:
Chapter 1. Basic concepts of automatic process design.- Chapter 2. Representation of Process Structures: P-graphs.- Chapter 3. Structural Model of PNS.- Chapter 4. Algorithmic Generation of the Maximal Structure.- Chapter 5. Algorithmic Generation of all Solution Structures.- Chapter 6. Accelerated Branch-and-Bound Algorithm of PNS.- Chapter 7. Literature Review on Research and Applications.- Chapter 8. Case study: Synthesis of production process for adipic acid.- Chapter 9. Enumeration-based Properties of Processing Systems: Reliability & Resilience.- Chapter 10. Formal proof of Algorithm MSG.- Chapter 11. Simplification of the Maximal Structure.- Chapter 12. Formal proof of algorithm SSG.- Chapter 13. Formal proof of algorithm ABB.- Chapter 14. Refined B&B Procedure.- Chapter 15.A Look Ahead B&B Procedure