• Contact

  • Newsletter

  • About us

  • Delivery options

  • Prospero Book Market Podcast

  • On the Topology and Future Stability of the Universe

    On the Topology and Future Stability of the Universe by Ringström, Hans;

    Series: Oxford Mathematical Monographs;

      • GET 10% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice GBP 107.50
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        51 358 Ft (48 912 Ft + 5% VAT)
      • Discount 10% (cc. 5 136 Ft off)
      • Discounted price 46 222 Ft (44 021 Ft + 5% VAT)

    51 358 Ft

    db

    Availability

    printed on demand

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Product details:

    • Publisher OUP Oxford
    • Date of Publication 23 May 2013

    • ISBN 9780199680290
    • Binding Hardback
    • No. of pages734 pages
    • Size 235x163x44 mm
    • Weight 1208 g
    • Language English
    • Illustrations 27 b/w line drawings, 2 b/w halftones, and 1 colour halftone
    • 0

    Categories

    Short description:

    A general introduction to the initial value problem for Einstein's equations coupled to collisionless matter. The book contains a proof of future stability of models of the universe consistent with the current observational data and a discussion of the restrictions on the possible shapes of the universe imposed by observations.

    More

    Long description:

    The standard starting point in cosmology is the cosmological principle; the assumption that the universe is spatially homogeneous and isotropic. After imposing this assumption, the only freedom left, as far as the geometry is concerned, is the choice of one out of three permissible spatial geometries, and one scalar function of time. Combining the cosmological principle with an appropriate description of the matter leads to the standard models. It is worth noting that these models yield quite a successful description of our universe.

    However, even though the universe may, or may not, be almost spatially homogeneous and isotropic, it is clear that the cosmological principle is not exactly satisfied. This leads to several questions. The most natural one concerns stability: given initial data corresponding to an expanding model of the standard type, do small perturbations give rise to solutions that are similar to the future? Another question concerns the shape of the universe: what are the restrictions if we only assume the universe to appear almost spatially homogeneous and isotropic to every observer?

    The main purpose of the book is to address these questions. However, to begin with, it is necessary to develop the general theory of the Cauchy problem for the Einstein-Vlasov equations. In order to to make the results accessible to researchers who are not mathematicians, but who are familiar with general relativity, the book contains an extensive prologue putting the results into a more general context.

    This impressive new book is first and foremost an original and thought-provoking contribution to the study of cosmology in research monograph form, in the best tradition of the kind of deep mathematical work which has played a crucial role in the development of the subject.

    More

    Table of Contents:

    I Prologue
    Introduction
    The Initial Value Problem
    The Topology of the Universe
    Notions of Proximity
    Observational Support
    Concluding Remarks
    II Introductory Material
    Main Results
    Outline, General Theory
    Outline, Main Results
    References and Outlook
    III Background and Basic Constructions
    Basic Analysis Estimates
    Linear Algebra
    Coordinates
    IV Function Spaces, Estimates
    Function Spaces, Distribution Functions
    Function Spaces on Manifolds
    Main Weighted Estimate
    Concepts of Convergence
    V Local Theory
    Uniqueness
    Local Existence
    Stability
    VI The Cauchy Problem in General Relativity
    The Vlasov Equation
    The Initial Value Problem
    Existence of an MGHD
    Cauchy Stability
    VII Spatial Homogeneity
    Spatially Homogeneous Metrics
    Criteria Ensuring Global Existence
    A Positive Non-Degenerate Minimum
    Approximating Fluids
    VIII Future Global Non-Linear Stability
    Background Material
    Estimates for the Vlasov Matter
    Global Existence
    Asymptotics
    Proof of the Stability Results
    Models with Arbitrary Spatial Topology
    IX Appendices
    Pathologies
    Quotients and Universal Covering Spaces
    Spatially Homogeneous and Isotropic Metrics
    Auxiliary Computations in Low Regularity
    Curvature, Left Invariant Metrics
    Comments, Einstein-Boltzmann

    More
    0