New Foundations in Mathematics: The Geometric Concept of Number
 
Product details:

ISBN13:9780817683849
ISBN10:0817683844
Binding:Hardback
No. of pages:370 pages
Size:235x155 mm
Weight:6978 g
Language:English
Illustrations: 23 Illustrations, black & white; 32 Illustrations, color
0
Category:

New Foundations in Mathematics

The Geometric Concept of Number
 
Edition number: 2013
Publisher: Birkhäuser
Date of Publication:
Number of Volumes: 1 pieces, Book
 
Normal price:

Publisher's listprice:
EUR 106.99
Estimated price in HUF:
44 149 HUF (42 047 HUF + 5% VAT)
Why estimated?
 
Your price:

35 319 (33 638 HUF + 5% VAT )
discount is: 20% (approx 8 830 HUF off)
Discount is valid until: 30 June 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Can't you provide more accurate information?
 
  Piece(s)

 
Short description:

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner.

The book begins with a discussion of modular numbers (clock arithmetic) and modular polynomials. This leads to the idea of a spectral basis, the complex and hyperbolic numbers, and finally to geometric algebra, which lays the groundwork for the remainder of the text. Many topics are presented in a new
light, including:

* vector spaces and matrices;
* structure of linear operators and quadratic forms;
* Hermitian inner product spaces;
* geometry of moving planes;
* spacetime of special relativity;
* classical integration theorems;
* differential geometry of curves and smooth surfaces;
* projective geometry;
* Lie groups and Lie algebras.

Exercises with selected solutions are provided, and chapter summaries are included to reinforce concepts as they are covered. Links to relevant websites are often given, and supplementary material is available on the author?s website.
 
New Foundations in Mathematics will be ofinterest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.

Long description:

The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner.

New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.



From the book reviews:

?This book is suitable for graduate students and researchers interested in learning how W. K. Clifford?s geometric algebras provide a common, geometrically well-interpreted algebraic language for linear algebra, vector calculus, linear operators, forms, relativity, symmetry, differential geometry, non-Euclidean and projective geometry as well as Lie algebras. Every section is followed by an appropriate set of exercises, deepening and consolidating the section?s content.? (Eckhard M. S. Hitzer, Mathematical Reviews, July, 2014)
Table of Contents:

1 Modular Number Systems.- 2 Complex and Hyperbolic Numbers.- 3 Geometric Algebra.- 4 Vector Spaces and Matrices.- 5 Outer Product and Determinants.- 6 Systems of Linear Equations.- 7 Linear Transformations on R^n.- 8 Structure of a Linear Operator.- 9 Linear and Bilinear Forms.- 10 Hermitian Inner Product Spaces.- 11 Geometry of Moving Planes.- 12 Representations of the Symmetric Group.- 13 Calculus on m-Surfaces.- 14 Differential Geometry of Curves.- 15 Differential Geometry of k-Surfaces.- 16 Mappings Between Surfaces.- 17 Non-Euclidean and Projective Geometries.- 18 Lie Groups and Lie Algebras.- References.- Symbols.