
Neural Networks: Computational Models and Applications
Computational Models and Applications
Series: Studies in Computational Intelligence; 53;
- Publisher's listprice EUR 160.49
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 13 616 Ft off)
- Discounted price 54 463 Ft (51 870 Ft + 5% VAT)
68 079 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 2007
- Publisher Springer
- Date of Publication 12 March 2007
- Number of Volumes 1 pieces, Book
- ISBN 9783540692256
- Binding Hardback
- No. of pages300 pages
- Size 235x155 mm
- Weight 653 g
- Language English
- Illustrations 103 Illustrations, black & white 0
Categories
Short description:
Neural Networks: Computational Models and Applications covers a wealth of important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. By presenting various computational models, this book is developed to provide readers with a quick but insightful understanding of the broad and rapidly growing areas in the neural networks domain.
Besides laying down fundamentals on artificial neural networks, this book also studies biologically inspired neural networks. Some typical computational models are discussed, and subsequently applied to objection recognition, scene analysis and associative memory. The studies of bio-inspired models have important implications in computer vision and robotic navigation, as well as new efficient algorithms for image analysis. Another significant feature of the book is that it begins with fundamental dynamical problems in presenting the mathematical techniques extensively used in analyzing neurodynamics, thus allowing non-mathematicians to develop and apply these analytical techniques easily.
Written for a wide readership, engineers, computer scientists and mathematicians interested in machine learning, data mining and neural networks modeling will find this book of value. This book will also act as a helpful reference for graduate students studying neural networks and complex dynamical systems.
MoreLong description:
Neural Networks: Computational Models and Applications covers a wealth of important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. By presenting various computational models, this book is developed to provide readers with a quick but insightful understanding of the broad and rapidly growing areas in the neural networks domain.
Besides laying down fundamentals on artificial neural networks, this book also studies biologically inspired neural networks. Some typical computational models are discussed, and subsequently applied to objection recognition, scene analysis and associative memory. The studies of bio-inspired models have important implications in computer vision and robotic navigation, as well as new efficient algorithms for image analysis. Another significant feature of the book is that it begins with fundamental dynamical problems in presenting the mathematical techniques extensively used in analyzing neurodynamics, thus allowing non-mathematicians to develop and apply these analytical techniques easily.
Written for a wide readership, engineers, computer scientists and mathematicians interested in machine learning, data mining and neural networks modeling will find this book of value. This book will also act as a helpful reference for graduate students studying neural networks and complex dynamical systems.
MoreTable of Contents:
Feedforward Neural Networks and Training Methods.- New Dynamical Optimal Learning for Linear Multilayer FNN.- Fundamentals of Dynamic Systems.- Various Computational Models and Applications.- Convergence Analysis of Discrete Time RNNs for Linear Variational Inequality Problem.- Parameter Settings of Hopfield Networks Applied to Traveling Salesman Problems.- Competitive Model for Combinatorial Optimization Problems.- Competitive Neural Networks for Image Segmentation.- Columnar Competitive Model for Solving Multi-Traveling Salesman Problem.- Improving Local Minima of Columnar Competitive Model for TSPs.- A New Algorithm for Finding the Shortest Paths Using PCNN.- Qualitative Analysis for Neural Networks with LT Transfer Functions.- Analysis of Cyclic Dynamics for Networks of Linear Threshold Neurons.- LT Network Dynamics and Analog Associative Memory.- Output Convergence Analysis for Delayed RNN with Time Varying Inputs.- Background Neural Networks with Uniform Firing Rate and Background Input.
More
Neural Networks: Computational Models and Applications: Computational Models and Applications
Subcribe now and receive a favourable price.
Subscribe
68 079 HUF