
Multi-Objective Memetic Algorithms
Series: Studies in Computational Intelligence; 171;
- Publisher's listprice EUR 160.49
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 20% (cc. 13 616 Ft off)
- Discounted price 54 463 Ft (51 870 Ft + 5% VAT)
68 079 Ft
Availability
Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
Not in stock at Prospero.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number Softcover reprint of hardcover 1st ed. 2009
- Publisher Springer
- Date of Publication 28 October 2010
- Number of Volumes 1 pieces, Previously published in hardcover
- ISBN 9783642099786
- Binding Paperback
- No. of pages404 pages
- Size 235x155 mm
- Weight 635 g
- Language English
- Illustrations XII, 404 p. Tables, black & white 0
Categories
Short description:
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design.
This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
MoreLong description:
The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design.
This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization.
MoreTable of Contents:
Evolutionary Multi-Multi-Objective Optimization - EMMOO.- Implementation of Multiobjective Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack Problem Case Study.- Knowledge Infused in Design of Problem-Specific Operators.- Solving Time-Tabling Problems Using Evolutionary Algorithms and Heuristics Search.- An Efficient Genetic Algorithm with Uniform Crossover for the Multi-Objective Airport Gate Assignment Problem.- Application of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimization Problems.- Feature Selection Using Single/Multi-Objective Memetic Frameworks.- Multi-Objective Robust Optimization Assisted by Response Surface Approximation and Visual Data-Mining.- Multiobjective Metamodel?Assisted Memetic Algorithms.- A Convergence Acceleration Technique for Multiobjective Optimisation.- Knowledge Propagation through Cultural Evolution.- Risk and Cost Tradeoff in Economic Dispatch Including Wind Power Penetration Based on Multi-Objective Memetic Particle Swarm Optimization.- Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization.- Nature-Inspired Particle Mechanics Algorithm for Multi-Objective Optimization.- Information Exploited for Local Improvement.- Combination of Genetic Algorithms and Evolution Strategies with Self-adaptive Switching.- Comparison between MOEA/D and NSGA-II on the Multi-Objective Travelling Salesman Problem.- Integrating Cross-Dominance Adaptation in Multi-Objective Memetic Algorithms.- A Memetic Algorithm for Dynamic Multiobjective Optimization.- A Memetic Coevolutionary Multi-Objective Differential Evolution Algorithm.- Multiobjective Memetic Algorithm and Its Application in Robust Airfoil Shape Optimization.
More
Multi-Objective Memetic Algorithms
Subcribe now and receive a favourable price.
Subscribe
68 079 HUF