• Contact

  • Newsletter

  • About us

  • Delivery options

  • Prospero Book Market Podcast

  • News

  • Methods in Molecular Biophysics: Structure, Dynamics, Function for Biology and Medicine

    Methods in Molecular Biophysics by Zaccai, Nathan R.; Serdyuk, Igor N.; Zaccai, Joseph;

    Structure, Dynamics, Function for Biology and Medicine

      • GET 10% OFF

      • The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
      • Publisher's listprice GBP 57.00
      • The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.

        28 847 Ft (27 474 Ft + 5% VAT)
      • Discount 10% (cc. 2 885 Ft off)
      • Discounted price 25 963 Ft (24 727 Ft + 5% VAT)

    28 847 Ft

    db

    Availability

    Estimated delivery time: In stock at the publisher, but not at Prospero's office. Delivery time approx. 3-5 weeks.
    Not in stock at Prospero.

    Why don't you give exact delivery time?

    Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.

    Product details:

    • Edition number 2
    • Publisher Cambridge University Press
    • Date of Publication 18 May 2017

    • ISBN 9781107056374
    • Binding Hardback
    • No. of pages702 pages
    • Size 283x224x40 mm
    • Weight 2190 g
    • Language English
    • Illustrations 825 b/w illus.
    • 0

    Categories

    Short description:

    A comprehensive graduate textbook explaining key physical methods in biology, reflecting the very latest research in this fast-moving field.

    More

    Long description:

    Current techniques for studying biological macromolecules and their interactions are based on the application of physical methods, ranging from classical thermodynamics to more recently developed techniques for the detection and manipulation of single molecules. Reflecting the advances made in biophysics research over the past decade, and now including a new section on medical imaging, this new edition describes the physical methods used in modern biology. All key techniques are covered, including mass spectrometry, hydrodynamics, microscopy and imaging, diffraction and spectroscopy, electron microscopy, molecular dynamics simulations and nuclear magnetic resonance. Each method is explained in detail using examples of real-world applications. Short asides are provided throughout to ensure that explanations are accessible to life scientists, physicists and those with medical backgrounds. The book remains an unparalleled and comprehensive resource for graduate students of biophysics and medical physics in science and medical schools, as well as for research scientists looking for an introduction to techniques from across this interdisciplinary field.

    Review of first edition: '... a valuable contribution to the field. ... There is nothing quite like it at the moment.' Sir Tom Blundell FRS, University of Cambridge

    More

    Table of Contents:

    Preface to the first edition; Preface to the second edition; Introduction; Part I. Biological Macromolecules and Physical Tools: 1. Macromolecules in their environment; 2. Macromolecules as physical particles; 3. Understanding macromolecular structures; Part II. Mass Spectrometry: 4. Mass and charge; 5. Structure function studies; Part III. Thermodynamics: 6. Thermodynamic stability and interactions; 7. Differential scanning calorimetry; 8. Isothermal titration calorimetry; 9. Surface plasmon resonance and interferometry-based biosensors; Part IV. Hydrodynamics: 10. Biological macromolecules as hydrodynamic particles; 11. Analytical ultracentrifugation; 12. Fluorescence depolarization; 13. Dynamic light scattering and fluorescence correlation spectroscopy; Part V. Optical Spectroscopy: 14. Visible and IR absorption spectroscopy; 15. Two-dimensional IR spectroscopy; 16. Raman scattering spectroscopy; 17. Optical activity and circular dichro&&&239;sm; Part VI. Optical Microscopy: 18. Light microscopy; 19. Single molecule manipulation and atomic force microscopy; 20. Fluorescence microscopy; 21. Single-molecule detection; 22. Single-molecule manipulation; Part VII. X-Ray and Neutron Diffraction: 23. The macromolecule as a radiation scattering particle; 24. Small-angle scattering and reflectometry; 25. X-ray and neutron macromolecular crystallography; Part VIII. Electron Diffraction: 26. Electron microscopy; 27. Three-dimensional reconstruction from two-dimensional images; Part IX. Molecular Dynamics: 28. Energy and time calculations; 29. Neutron spectroscopy; Part X. Nuclear Magnetic Resonance: 30. Distances and angles from frequencies; 31. Experimental techniques; 32. Structure and dynamics studies; Part XI. Medical Imaging: 33. Radiology and positron emission tomography; 34. Ultrasound imaging; 35. Magnetic resonance imaging; References; Index of eminent scientists; Subject index.

    More