
- Publisher's listprice EUR 74.89
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 12% (cc. 3 793 Ft off)
- Discounted price 27 817 Ft (26 492 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
31 611 Ft
Availability
printed on demand
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Edition number 1st ed. 2022
- Publisher Springer Nature Singapore
- Date of Publication 6 January 2022
- Number of Volumes 1 pieces, Book
- ISBN 9789811660450
- Binding Hardback
- No. of pages330 pages
- Size 235x155 mm
- Weight 688 g
- Language English
- Illustrations XVI, 330 p. 1 illus. Illustrations, black & white 325
Categories
Long description:
The focus of this book is on providing students with insights into geometry that can help them understand deep learning from a unified perspective. Rather than describing deep learning as an implementation technique, as is usually the case in many existing deep learning books, here, deep learning is explained as an ultimate form of signal processing techniques that can be imagined.
To support this claim, an overview of classical kernel machine learning approaches is presented, and their advantages and limitations are explained. Following a detailed explanation of the basic building blocks of deep neural networks from a biological and algorithmic point of view, the latest tools such as attention, normalization, Transformer, BERT, GPT-3, and others are described. Here, too, the focus is on the fact that in these heuristic approaches, there is an important, beautiful geometric structure behind the intuition that enables a systematic understanding. A unified geometric analysis to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are described from a unified geometric perspective, showing that they actually come from statistical distance-minimization problems.
Because this book contains up-to-date information from both a practical and theoretical point of view, it can be used as an advanced deep learning textbook in universities or as a reference source for researchers interested in acquiring the latest deep learning algorithms and their underlying principles. In addition, the book has been prepared for a codeshare course for both engineering and mathematics students, thus much of the content is interdisciplinary and will appeal to students from both disciplines.
Table of Contents:
Part I Basic Tools for Machine Learning: 1. Mathematical Preliminaries.- 2. Linear and Kernel Classifiers.- 3. Linear, Logistic, and Kernel Regression.- 4. Reproducing Kernel Hilbert Space, Representer Theorem.- Part II Building Blocks of Deep Learning: 5. Biological Neural Networks.- 6. Artificial Neural Networks and Backpropagation.- 7. Convolutional Neural Networks.- 8. Graph Neural Networks.- 9. Normalization and Attention.- Part III Advanced Topics in Deep Learning.- 10. Geometry of Deep Neural Networks.- 11. Deep Learning Optimization.- 12. Generalization Capability of Deep Learning.- 13. Generative Models and Unsupervised Learning.- Summary and Outlook.- Bibliography.- Index.
More