
Applicability of No-insulation High-Temperature Superconductor Saddle-Shaped Dipole Magnet to Particle Accelerator
Series: Springer Theses;
- Publisher's listprice EUR 235.39
-
The price is estimated because at the time of ordering we do not know what conversion rates will apply to HUF / product currency when the book arrives. In case HUF is weaker, the price increases slightly, in case HUF is stronger, the price goes lower slightly.
- Discount 12% (cc. 11 923 Ft off)
- Discounted price 87 434 Ft (83 271 Ft + 5% VAT)
Subcribe now and take benefit of a favourable price.
Subscribe
99 358 Ft
Availability
Not yet published.
Why don't you give exact delivery time?
Delivery time is estimated on our previous experiences. We give estimations only, because we order from outside Hungary, and the delivery time mainly depends on how quickly the publisher supplies the book. Faster or slower deliveries both happen, but we do our best to supply as quickly as possible.
Product details:
- Publisher Springer Nature Singapore
- Date of Publication 27 September 2025
- Number of Volumes 1 pieces, Book
- ISBN 9789819511303
- Binding Hardback
- No. of pages157 pages
- Size 235x155 mm
- Language English
- Illustrations XVII, 157 p. 94 illus., 86 illus. in color. Illustrations, black & white 700
Categories
Long description:
This thesis addresses research on the design, fabrication, and operation of the first saddle-shaped dipole magnet for particle accelerators using a no-insulation high-temperature superconducting (HTS) magnet technology. Unlike HTS magnets with various geometries used in other applications, saddle-shaped magnets posed unresolved challenges in analysis and fabrication due to their complex shape. This thesis is the first study to systematically classify these issues and propose detailed solutions for each. Scaling up the techniques used in this research could enable the development of dipole magnets exceeding 20 T, significantly enhancing particle accelerator performance. Institutions such as CERN and INFN-LASA are pursuing high-field HTS magnets, and this study has led to international collaborations, including Horizon Europe and the International Muon Collider Collaboration. This research has opened a new chapter in foundational technology for particle accelerators, which are widely adopted in particle physics, cancer treatment, chemistry, biotechnology, and materials science. Moreover, it addresses major challenges in HTS magnet technology, such as precise estimation of critical current, screening current analysis, and quench repetition experiments and analysis, by defining these problems and presenting viable solutions with experimental validations.
MoreTable of Contents:
Abstract.- 1 INTRODUCTION.- 2 ANALYSIS METHODS FOR SADDLE-SHAPED DIPOLE MAGNET ADOPTING NO-INSULATION TECHNIQUE.- 3 DESIGN, CONSTRUCTION, AND OPERATION OF SADDLE-SHAPED DIPOLE MAGNET.- 4 EXPERIMENTAL RESULTS AND ANALYSIS OF HTS SADDLE-SHAPED DIPOLE MAGNET.- 5 CONCLUSION.- Appendix.
More