Product details:

ISBN13:9780443139819
ISBN10:0443139814
Binding:Paperback
No. of pages:350 pages
Size:229x152 mm
Language:English
700
Category:

Advanced Nanocarbon Polymer Biocomposites

Sustainability Towards Zero Biowaste
 
Publisher: Woodhead Publishing
Date of Publication:
 
Normal price:

Publisher's listprice:
EUR 265.99
Estimated price in HUF:
109 760 HUF (104 534 HUF + 5% VAT)
Why estimated?
 
Your price:

87 809 (83 627 HUF + 5% VAT )
discount is: 20% (approx 21 952 HUF off)
Discount is valid until: 30 June 2024
The discount is only available for 'Alert of Favourite Topics' newsletter recipients.
Click here to subscribe.
 
Availability:

Not yet published.
 
  Piece(s)

 
Long description:

Nanocarbon polymer biocomposites have gained increased attention from both researchers and manufacturers due to the significant improvement in their physico-mechanical, thermal and barrier properties when compared to conventional materials. Their dimensions, biodegradable character, cost-effectiveness, and sustainability are among the main drivers for increasing demand. However, it is difficult to achieve uniform dispersion between the carbon filler and matrix as it easily forms agglomerations. Production of nanocarbon polymer biocomposites with high mechanical and thermal properties is also limited, but there has been rapid progress in processing possibilities to produce nanocomposites based on various biodegradable fillers. Advanced Nanocarbon Polymer Biocomposites: Sustainability Towards Zero Biowaste collects all these novel scientific findings in one place. It discusses in detail their physical, chemical, and electrical properties and presents the latest research findings on nanocarbon polymer biocomposites with filler loadings and their improvement on compatibility. The book will be of great interest for those researchers who are concerned with the production and use of nanocarbon polymer biocomposites as a new innovative advanced material.




  • Emphasis on nanoscale fillers and their improvement on compatibility
  • Evaluates the impact of polymer production through life cycle analysis of both single and hybrid polymers and nanocomposites
  • A strong focus on sustainability and green chemistry perspectives
Table of Contents:
1. Nanocarbon from Pine Wood Sawdust and Its Biocomposites Applications
2. Current and Future Development of Nanocarbon and its Biocomposites Production
3. Biosynthetic and Natural Nanocarbon Production
4. Aspen Wood Sawdust and Its Biocomposites Applications
5. Impact on Biocomposites Using Various Types of Nanocarbon and Polymer
6. Roles of Simulation Model on Production of High Performance Nanocarbon Polymer Biocomposites
7. MMT-Activated Nanocarbon from Pine Wood Sawdust and Its Biocomposites
8. Titanium (IV) Oxide Activated Nanocarbon from Pine Wood Sawdust and its Biocomposites
9. Iron (III) Chloride Activated Nanocarbon from Pine Wood Sawdust and its Biocomposites
10. Zinc Oxide Activated Nanocarbon from Aspen Wood Sawdust and its Biocomposites
11. Activated MMT Nanocarbon from Aspen Wood Sawdust and its Biocomposites
12. Titanium (IV) Dioxide Activated Nanocarbon from Aspen Wood Sawdust and its Bio-composites